skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 11 until 2:00 AM ET on Saturday, July 12 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on March 4, 2026

Title: Enhanced Ion Transport and Molecular Packing Stability in Asymmetric 2D Nanostructured π‐Conjugated Thieno[3,2‐b]Thiophene‐Based Liquid Crystal
Abstract Organic semiconductors based on liquid crystal (LC) molecules have attracted increasing interest. In this work, two linear LCs based on 2,5‐bis(thien‐2‐yl)thieno[3,2‐b]thiophene (BTTT) mesogen are designed and synthesized, including BTTT/dEO3 with two symmetrically attached tri(ethylene oxide) groups and BTTT/mEO6 with one asymmetrically attached hexa(ethylene oxide) group. These two molecules have comparable functional‐group compositions but different molecular geometries, leading to their moderately different material performances. Both LCs show smectic mesophases with relatively low transition temperatures as confirmed by differential scanning calorimetry and polarized optical microscopy. A combination of experimental grazing incidence wide‐angle X‐ray scattering and molecular dynamics (MD) simulations reveals a herringbone packing motif of BTTT segments in both LCs while a smaller molecular tilt angle in BTTT/mEO6. Ionic conductivities are measured by doping LCs with different amounts of ionic dopants, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). BTTT/mEO6 shows better smectic phase stability to higher LiTFSI doping ratios. Both LCs exhibit similar ionic conductivities in the smectic phases, but BTTT/mEO6 outperforms BTTT/dEO3 by a factor of three in the amorphous phase at higher temperatures. MD simulations, performed to examine the ion solvation environment, reveal that BTTT/mEO6 is more efficient in coordinating Li‐ions and screening their interactions with TFSI‐ions which further promote ionic transport.  more » « less
Award ID(s):
2011854
PAR ID:
10576347
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
35
Issue:
24
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Mismatched complex oxide thin films and heterostructures have gained significant traction for use as electrolytes in intermediate temperature solid oxide fuel cells, wherein interfaces exhibit variation in ionic conductivity as compared to the bulk. Although misfit dislocations present at interfaces in these structures impact ionic conductivity, the fundamental mechanisms responsible for this effect are not well understood. To this end, a kinetic lattice Monte Carlo (KLMC) model was developed to trace oxygen vacancy diffusion at misfit dislocations in SrTiO3/BaZrO3 heterostructures and elucidate the atomistic mechanisms governing ionic diffusion at oxide interfaces. The KLMC model utilized oxygen vacancy migration energy barriers computed using molecular statics. While some interfaces promote oxygen vacancy diffusion, others impede their transport. Fundamental factors such as interface layer chemistry, misfit dislocation structure, and starting and ending sites of migrating ions play a crucial role in oxygen diffusivity. Molecular dynamics (MD) simulations were further performed to support qualitative trends for oxygen vacancy diffusion. Overall, the agreement between KLMC and MD is quite good, though MD tends to predict slightly higher conductivities, perhaps a reflection of nuanced structural relaxations that are not captured by KLMC. The current framework comprising KLMC modeling integrated with molecular statics offers a powerful tool to perform mechanistic studies focused on ionic transport in thin film oxide electrolytes and facilitate their rational design. 
    more » « less
  2. Nanocomposite polymer electrolytes (CPEs) are promising materials for all-solid-state lithium metal batteries (LMBs) due to their enhanced ionic conductivities and stability to the lithium anode. MXenes are a new two-dimensional, 2D, family of early transition metal carbides and nitrides, which have a high aspect ratio and a hydrophilic surface. Herein, using a green, facile aqueous solution blending method, we uniformly dispersed small amounts of Ti 3 C 2 T x into a poly(ethylene oxide)/LiTFSI complex (PEO 20 -LiTFSI) to fabricate MXene-based CPEs (MCPEs). The addition of the 2D flakes to PEO simultaneously retards PEO crystallization and enhances its segmental motion. Compared to the 0D and 1D nanofillers, MXenes show higher efficiency in ionic conductivity enhancement and improvement in the performance of LMBs. The CPE with 3.6 wt% MXene shows the highest ionic conductivity at room temperature (2.2 × 10 −5 S m −1 at 28 °C). An LMB using MCPE with only 1.5 wt% MXene shows rate capability and stability comparable with that of the state-of-the-art CPELMBs. We attribute the excellent performance to the 2D geometry of the filler, the good dispersion of the flakes in the polymer matrix, and the functional group-rich surface. 
    more » « less
  3. Because 3D batteries comprise solid polymer electrolytes (SPE) confined to high surface area porous scaffolds, the interplay between polymer confinement and interfacial interactions on total ionic conductivity must be understood. This paper investigates contributions to the structure-conductivity relationship in poly(ethylene oxide) (PEO)–lithium bis(trifluorosulfonylimide) (LiTFSI) complexes confined to microporous nickel scaffolds. For bulk and confined conditions, PEO crystallinity decreases as the salt concentration (Li+:EO (r) = 0.0.125, 0.0167, 0.025, 0.05) increases. For pure PEO and all r values except 0.05, PEO crystallinity under confinement is lower than in the bulk, whereas glass transition temperature remains statistically invariant. At 298 K (semicrystalline), total ionic conductivity under confinement is higher than in the bulk at r = 0.0167, but remains invariant at r = 0.05; however, at 350 K (amorphous), total ionic conductivity is higher than in the bulk for both salt concentrations. Time–of–flight secondary ion mass spectrometry indicates selective migration of ions towards the polymer–scaffold interface. In summary, for the 3D structure studied, polymer crystallinity, interfacial segregation, and tortuosity play an important role in determining total ionic conductivity and, ultimately, the emergence of 3D SPEs as energy storage materials. 
    more » « less
  4. The rapid growth of mobile, portable, wearable and flexible electronics leads to the increasing demand for energy storage devices using solid-state polymer electrolytes (PEs), which outperform liquid electrolytes in terms of safety, mechanical properties, and simplicity of device fabrication and packaging. However, processing PEs will always introduce solvent molecules that greatly affect the ionic conductivity and mechanical properties. For example, PEs prepared through solution-casting methods always have solvent residues. A trace amount of water molecules absorbed from the air is also inevitable. Recently, we demonstrated the controlled introduction of solvent molecules to PEs to balance the ionic conductivity and mechanical stiffness for structural energy storage applications. To better understand how solvent molecules behave and interact with other components in PEs, here we present the molecular dynamics simulation of a representative polymer electrolyte system with various water content. We use simulation results to determine the effect of trace water content before forming a liquid phase on ionic conductivity and mechanical properties. The insights into the molecular interactions in the PE system will help us design and optimize Pes’ composition and processing for practical applications. The simulation model of polymer electrolyte is built with polyethylene oxide (PEO) and lithium perchlorate (LiClO4) with various water contents, in which the water molecule to lithium-ion ratio ranges from 0 to 3. The electrolyte with each water content is simulated between two graphene electrodes to determine its ionic conductivity. Uniaxial deformation has been performed on the electrolyte to obtain the mechanical properties. All simulations were performed using the molecular dynamics simulation code LAMMPS with the CHARMM force field. The results show that the ionic conductivity of the polymer electrolyte system increases significantly (up to one order of magnitude) with the increase of water content (up to 3 water molecules per lithium ion), even when the added water does not form a continuous liquid phase. The change of ionic conductivity with water content is correlated to the degree of association between different types of ions or molecules in the system, as evidenced by the evaluation of the radial distribution functions. As the association between polymer molecules and lithium ions reduces with increasing water, it becomes easier for the lithium ions to diffuse and resulting in higher ionic conductivity. It is also observed that the perchlorate ions’ interactions with polymer molecules remain the same with different water contents, which shows different roles of lithium ions and perchlorate ions in ion conduction in this system. On the other hand, the modulus of elasticity of the polymer electrolyte does not change much with the increase of water, which agrees with the previous experimental work of our group. This means that the trace amount of water is strongly associated with other solid molecules or ions and is not affecting the stiffness of the system as long as no liquid phase is formed. The results will lead to novel strategies to design polymer electrolytes with both high ionic conductivity and good mechanical properties for flexible or multifunctional energy storage applications. 
    more » « less
  5. Abstract Despite significant interest toward solid‐state electrolytes owing to their superior safety in comparison to liquid‐based electrolytes, sluggish ion diffusion and high interfacial resistance limit their application in durable and high‐power density batteries. Here, a novel quasi‐solid Li+ion conductive nanocomposite polymer electrolyte containing black phosphorous (BP) nanosheets is reported. The developed electrolyte is successfully cycled against Li metal (over 550 h cycling) at 1 mA cm−2at room temperature. The cycling overpotential is dropped by 75% in comparison to BP‐free polymer composite electrolyte indicating lower interfacial resistance at the electrode/electrolyte interfaces. Molecular dynamics simulations reveal that the coordination number of Li+ions around (trifluoromethanesulfonyl)imide (TFSI) pairs and ethylene‐oxide chains decreases at the Li metal/electrolyte interface, which facilitates the Li+transport through the polymer host. Density functional theory calculations confirm that the adsorption of the LiTFSI molecules at the BP surface leads to the weakening of N and Li atomic bonding and enhances the dissociation of Li+ions. This work offers a new potential mechanism to tune the bulk and interfacial ionic conductivity of solid‐state electrolytes that may lead to a new generation of lithium polymer batteries with high ionic conduction kinetics and stable long‐life cycling. 
    more » « less