skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Illuminating the “Invisible”: Substantial Deep Respiration and Lateral Export of Dissolved Carbon From Beneath Soil
Abstract Dissolved organic and inorganic carbon (DOC and DIC) influence water quality, ecosystem health, and carbon cycling. Dissolved carbon species are produced by biogeochemical reactions and laterally exported to streams via distinct shallow and deep subsurface flow paths. These processes are arduous to measure and challenge the quantification of global carbon cycles. Here we ask: when, where, and how much is dissolved carbon produced in and laterally exported from the subsurface to streams? We used a catchment‐scale reactive transport model, BioRT‐HBV, with hydrometeorology and stream carbon data to illuminate the “invisible” subsurface processes at Sleepers River, a carbonate‐based catchment in Vermont, United States. Results depict a conceptual model where DOC is produced mostly in shallow soils (3.7 ± 0.6 g/m2/yr) and in summer at peak root and microbial respiration. DOC is flushed from soils to the stream (1.0 ± 0.2 g/m2/yr) especially during snowmelt and storms. A large fraction of DOC (2.5 ± 0.2 g/m2/yr) percolates to the deeper subsurface, fueling deep respiration to generate DIC. DIC is exported predominantly from the deeper subsurface (7.1 ± 0.4 g/m2/yr, compared to 1.3 ± 0.3 g/m2/yr from shallow soils). Deep respiration reduces DOC and increases DIC concentrations at depth, leading to commonly observed DOC flushing (increasing concentrations with discharge) and DIC dilution patterns (decreasing concentrations with discharge). Surprisingly, respiration processes generate more DIC than weathering in this carbonate‐based catchment. These findings underscore the importance of vertical connectivity between the shallow and deep subsurface, highlighting the overlooked role of deep carbon processing and export.  more » « less
Award ID(s):
2012123
PAR ID:
10576799
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Volume:
60
Issue:
6
ISSN:
0043-1397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Terrestrial production and export of dissolved organic and inorganic carbon (DOC and DIC) to streams depends on water flow and biogeochemical processes in and beneath soils. Yet, understanding of these processes in a rapidly changing climate is limited. Using the watershed‐scale reactive‐transport model BioRT‐HBV and stream data from a snow‐dominated catchment in the Rockies, we show deeper groundwater flow averaged about 20% of annual discharge, rising to ∼35% in drier years. DOC and DIC production and export peaked during snowmelt and wet years, driven more by hydrology than temperature. DOC was primarily produced in shallow soils (1.94 ± 1.45 gC/m2/year), stored via sorption, and flushed out during snowmelt. Some DOC was recharged to and further consumed in the deeper subsurface via respiration (−0.27 ± 0.02 gC/m2/year), therefore reducing concentrations in deeper groundwater and stream DOC concentrations at low discharge. Consequently, DOC was primarily exported from the shallow zone (1.62 ± 0.96 gC/m2/year, compared to 0.12 ± 0.02 gC/m2/year from the deeper zone). DIC was produced in both zones but at higher rates in shallow soils (1.34 ± 1.00 gC/m2/year) than in the deep subsurface (0.36 ± 0.02 gC/m2/year). Deep respiration elevated DIC concentrations in the deep zone and stream DIC concentrations at low discharge. In other words, deep respiration is responsible for the commonly‐observed increasing DOC concentrations (flushing) and decreasing DIC concentrations (dilution) with increasing discharge.  DIC export from the shallow zone was ~66% of annual export but can drop to ∼53% in drier years. Numerical experiments suggest lower carbon production and export in a warmer, drier future, and a higher proportion from deeper flow and respiration processes. These results underscore the often‐overlooked but growing importance of deeper processes in a warming climate. 
    more » « less
  2. Soil biota generate CO2 that can vertically export to the atmosphere, and dissolved organic and inorganic carbon (DOC and DIC) that can laterally export to streams and accelerate weathering. These processes are regulated by external hydroclimate forcing and internal structures (permeability distribution), the relative influences of which are rarely studied. Understanding these interactions is essential a hydrological extremes intensify in the future. Here we explore the question: How and to what extent do hydrological and permeability distribution conditions regulate soil carbon transformations and chemical weathering? We address the questions using a hillslope reactive transport model constrained by data from the Fitch Forest (Kansas, United States). Numerical experiments were used to mimic hydrological extremes and variable shallow-versus-deep permeability contrasts. Results demonstrate that under dry conditions (0.08 mm/day), long water transit times led to more mineralization of organic carbon (OC) into inorganic carbon (IC) form (>98\%). Of the IC produced, ~ 75\% was emitted upward as CO2 gas and ~ 25\% was exported laterally as DIC into the stream. Wet conditions (8.0 mm/day) resulted in less mineralization (~88\%), more DOC production (~12\%), and more lateral fluxes of IC (~50\% of produced IC). Carbonate precipitated under dry conditions and dissolved under wet conditions as the fast flow rapidly droves the reaction to disequilibrium. The results depict a conceptual hillslope model that prompts four hypotheses for our community to test. H1: Droughts enhance carbon mineralization and vertical upward carbon fluxes, whereas large hydrological events such as storms and flooding enhance subsurface vertical connectivity, reduce transit times, and promote lateral export. H2: The role of weathering as a net carbon sink or source to the atmosphere depends on the interaction between hydrologic flows and lithology: transition from droughts to storms can shift carbonate from a carbon sink (mineral precipitation) to carbon source (dissolution). H3: Permeability contrasts regulate the lateral flow partitioning via shallow flow paths versus deeper groundwater though this alter reaction rates negligibly. H4: Stream chemistry reflect flow paths and can potentially quantify water transit times: solutes enriched in shallow soils have a younger water signature; solutes abundant at depth carry older water signature. 
    more » « less
  3. High elevation mountain watersheds are undergoing rapid warming and declining snow fractions worldwide, causing earlier and quicker snowmelt. Understanding how this hydrologic shift affects subsurface flow paths, biogeochemical reactions, and solute export has been challenging due to the entanglement of hydrological and biogeochemical processes. Coal Creek, a high-elevation catchment (2,700 3,700 m, 53 km2) in Colorado, is experiencing a higher rate of warming than surrounding low-lying areas. This warming corresponds with dynamic and increased responses from biogenic solutes and dissolved organic carbon (DOC), whereas the behavior of geogenic solutes and dissolved inorganic carbon (DIC) has remained relatively unchanged. DOC has experienced the largest concentration increase (>3x), with annual average flow weighted concentrations positively correlated to average annual temperature. This suggests temperature is the main driver of increasing DOC levels. Although DOC and DIC response to warming is influenced by many drivers, the relative contribution of each remains unknown. DOC and DIC were analyzed to incorporate both carbon component products of soil respiration (DOC and CO2) and to represent high solute concentrations transported by shallow (DOC) versus deep (DIC) subsurface flow. The contrasting behavior of these carbon solutes indicates climate change and warming are driving changes in organic matter decomposition and soil respiration. Modeling results from the process-based model HBV-BioRT show increased temperatures cause earlier snowmelt and streamflow generation and lower peak discharge. As stream flow generation occurs earlier, so do DOC flushing and DIC dilution events. Additionally, post-snowmelt periods show greater DOC production and concentrations under warming scenarios. Results indicated increased production of DOC in post-snowmelt periods. DOC is then flushed out by earlier snowmelt partitioned through the shallow soil zone. Most process-based studies lack a watershed-scale understanding of carbon transformation and flow path alterations. This work demonstrates complex hydrologic and biogeochemical coupling at the watershed scale to illustrate how water flow paths and chemistry are responding to a changing climate in highelevation mountain watersheds. 
    more » « less
  4. Large volumes of fluid flow through aged oceanic crust. Given the scale of this water flux, the exchange of organic and inorganic carbon that it mediates between the crust and deep ocean can be significant. However, off-axis carbon fluxes in older oceanic crust are still poorly constrained because access to low-temperature fluids from this environment is limited. At North Pond, a sedimented depression located on 8-million-year-old crust on the flank of the Mid-Atlantic Ridge, circulating crustal fluids are accessible through drilled borehole observatories. Here, fluids are cool (≤ 20°C), oxygenated and bear strong geochemical similarities to bottom seawater. In this study, we report concentrations and isotopic composition of dissolved organic and inorganic carbon from crustal fluids that were sampled six years after the installation of borehole observatories, which better represent the fluid geochemistry prior to drilling and perturbation. Radiocarbon-based signatures within carbon reservoirs support divergent shallow and deep fluid pathways within the crust. We also report a net loss of both dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) from the fluid during isolation in the crust. The removal of DOC is isotopically selective and consistent with microbe-mediated DOC oxidation. The loss of DIC is consistent with carbonate precipitation, although geochemical signatures of DIC addition to the fluids from DOC oxidation and basalt weathering are also evident. Extrapolated to global fluxes, systems like North Pond could be responsible for a net loss of ~10^11 mol C/yr of DIC and ~10^11 mol C/yr of DOC during the circulation of fluids through oceanic crust at low temperatures. 
    more » « less
  5. Abstract Aquatic fluxes of carbon and nutrients link terrestrial and aquatic ecosystems. Within forests, storm events drive both the delivery of carbon and nitrogen to the forest floor and the export of these solutes from the land via streams. To increase understanding of the relationships between hydrologic event character and the relative fluxes of carbon and nitrogen in throughfall, stemflow and streams, we measured dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) concentrations in each flow path for 23 events in a forested watershed in Vermont, USA. DOC and TDN concentrations increased with streamflow, indicating their export was limited by water transport of catchment stores. DOC and TDN concentrations in throughfall and stemflow decreased exponentially with increasing precipitation, suggesting that precipitation removed a portion of available sources from tree surfaces during the events. DOC and TDN fluxes were estimated for 76 events across a 2‐year period. For most events, throughfall and stemflow fluxes greatly exceeded stream fluxes, but the imbalance narrowed for larger storms (>30 mm). The largest 10 stream events exported 40% of all stream event DOC whereas those same 10 events contributed 14% of all throughfall export. Approximately 2–5 times more DOC and TDN was exported from trees during rain events than left the catchment via streams annually. The diverging influence of event size on tree versus stream fluxes has important implications for forested ecosystems as hydrological events increase in intensity and frequency due to climate change. 
    more » « less