skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Comparing Traditional Computer Vision Algorithms and Deep Convolutional Neural Networks as Self Driving Algorithms for Use in Dynamic Conditions
This research develops, compares, and analyzes both a traditional algorithm using computer vision and a deep learning model to deal with dynamic road conditions. In the final testing, the deep learning model completed the target of five laps for both the inner and outer lane, whereas the computer vision algorithm only completed almost three laps for the inner lane and slightly over four laps for the outer. After conducting statistical analysis on the results of our deep learning model by finding the p-value between the absolute error and squared error of the self-driving algorithm in the outer lane and inner lane, we find that our results are statistically significant based on a two-tailed T test with unequal variances where the p-value for absolute error is 0.009, and 0.001 for squared error. Self-driving vehicles are not only complex, but they are growing in necessity—therefore, finding an optimal solution for lane detection in dynamic conditions is crucial to continue innovation.  more » « less
Award ID(s):
2150096 2150292
PAR ID:
10576894
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3503-0965-2
Page Range / eLocation ID:
1 to 5
Format(s):
Medium: X
Location:
Cambridge, MA, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Robust lane-following algorithms are one of the main challenges in developing effective automated vehicles. In this work, a team of four undergraduate students designed and evaluated several automated lane-following algorithms using computer vision as part of a Research Experience for Undergraduates program funded by the National Science Foundation. The developed algorithms use the Robot Operating System (ROS) and the OpenCV library in Python to detect lanes and implement the lane-following logic on the road. The algorithms were tested on a real-world test course using a street-legal vehicle with a high-definition camera as input and a drive-by-wire system for output. Driving data were recorded to compare the performance of human driving to that of the self-driving algorithms on the basis of three criteria: lap completion time, lane positioning infractions, and speed limit infractions. The evaluation of the data showed that the human drivers successfully completed every lap with zero infractions at a 100% success rate in varied weather conditions, whereas, our most reliable algorithms had a success rate of at least 70% with some lane positioning infractions and at lower speeds. 
    more » « less
  2. Reliable lane-following is one of the most important tasks for an automated vehicle or ADAS. The intent of this project was to design and evaluate multiple lane-following algorithms for an automated vehicle using computer vision. The implemented algorithms' performance was then evaluated on a testing course and compared with a human driver. ROS and OpenCV were used to detect and follow lanes on the road. A street-legal vehicle with a high-definition camera and drive-by-wire system was used to implement and evaluate driving data. Each algorithm was evaluated based on time for completion, speed limit infractions, and lane positioning infractions. The recorded evaluation data determined the most reliable lane-following algorithm. All of our algorithms had a success rate of at least 60% on certain lanes of the testing course. 
    more » « less
  3. State-of-the-art lane detection methods use a variety of deep learning techniques for lane feature extraction and prediction, demonstrating better performance than conventional lane detectors. However, deep learning approaches are computationally demanding and often fail to meet real-time requirements of autonomous vehicles. This paper proposes a lane detection method using a light-weight convolutional neural network model as a feature extractor exploiting the potential of deep learning while meeting real-time needs. The developed model is trained with a dataset containing small image patches of dimension 16 × 64 pixels and a non-overlapping sliding window approach is employed to achieve fast inference. Then, the predictions are clustered and fitted with a polynomial to model the lane boundaries. The proposed method was tested on the KITTI and Caltech datasets and demonstrated an acceptable performance. We also integrated the detector into the localization and planning system of our autonomous vehicle and runs at 28 fps in a CPU on image resolution of 768 × 1024 meeting real-time requirements needed for self-driving cars. 
    more » « less
  4. This study investigates the problem of decentralized dynamic resource allocation optimization for ad-hoc network communication with the support of reconfigurable intelligent surfaces (RIS), leveraging a reinforcement learning framework. In the present context of cellular networks, device-to-device (D2D) communication stands out as a promising technique to enhance the spectrum efficiency. Simultaneously, RIS have gained considerable attention due to their ability to enhance the quality of dynamic wireless networks by maximizing the spectrum efficiency without increasing the power consumption. However, prevalent centralized D2D transmission schemes require global information, leading to a significant signaling overhead. Conversely, existing distributed schemes, while avoiding the need for global information, often demand frequent information exchange among D2D users, falling short of achieving global optimization. This paper introduces a framework comprising an outer loop and inner loop. In the outer loop, decentralized dynamic resource allocation optimization has been developed for self-organizing network communication aided by RIS. This is accomplished through the application of a multi-player multi-armed bandit approach, completing strategies for RIS and resource block selection. Notably, these strategies operate without requiring signal interaction during execution. Meanwhile, in the inner loop, the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm has been adopted for cooperative learning with neural networks (NNs) to obtain optimal transmit power control and RIS phase shift control for multiple users, with a specified RIS and resource block selection policy from the outer loop. Through the utilization of optimization theory, distributed optimal resource allocation can be attained as the outer and inner reinforcement learning algorithms converge over time. Finally, a series of numerical simulations are presented to validate and illustrate the effectiveness of the proposed scheme. 
    more » « less
  5. The majority of the past research dealing with lane-changing controller design of autonomous vehicles (𝐴𝑉 s) is based on the assumption of full knowledge of the model dynamics of the 𝐴𝑉 and the surrounding vehicles. However, in the real world, this is not a very realistic assumption as accurate dynamic models are difficult to obtain. Also, the dynamic model parameters might change over time due to various factors. Thus, there is a need for a learning-based lane change controller design methodology that can learn the optimal control policy in real time using sensor data. In this paper, we have addressed this need by introducing an optimal learningbased control methodology that can solve the real-time lane-changing problem of 𝐴𝑉 s, where the input-state data of the 𝐴𝑉 is utilized to generate a near-optimal lane-changing controller by approximate/adaptive dynamic programming (ADP) technique. In the case of this type of complex lane-changing maneuver, the lateral dynamics depend on the longitudinal velocity of the vehicle. If the longitudinal velocity is assumed constant, a linear parameter invariant model can be used. However, assuming constant velocity while performing a lane-changing maneuver is not a realistic assumption. This assumption might increase the risk of accidents, especially in the case of lane abortion when the surrounding vehicles are not cooperative. Thus, in this paper, the dynamics of the 𝐴𝑉 are assumed to be a linear parameter-varying system. Thus we have two challenges for the lane-changing controller design: parameter-varying, and unknown dynamics. With the help of both gain scheduling and ADP techniques combined, a learning-based control algorithm that can generate a near-optimal lane-changing controller without having to know the accurate dynamic model of the 𝐴𝑉 is proposed. The inclusion of a gain scheduling approach with ADP makes the controller applicable to non-linear and/or parameter-varying 𝐴𝑉 dynamics. The stability of the learning-based gain scheduling controller has also been rigorously proved. Moreover, a data-driven lane-changing decision-making algorithm is introduced that can make the 𝐴𝑉 perform a lane abortion if safety conditions are violated during a lane change. Finally, the proposed learning-based gain scheduling controller design algorithm and the lane-changing decision-making methodology are numerically validated using MATLAB, SUMO simulations, and the NGSIM dataset. 
    more » « less