Abstract. Since the 1990s, analysis of cosmogenic nuclides, primarily 10Be, in quartz-bearing river sand, has allowed for quantitative determination of erosion rates at a basin scale. Paired measurements of in situ cosmogenic 26Al and 10Be in sediment are less common but offers insight into the history of riverine sediment moving down slopes and through drainage basins. Prolonged sediment burial (>105 years), a violation of assumptions underlying erosion rate calculations, is indicated by higher 26Al-based than 10Be-based erosion rates due to preferential loss of shorter-lived 26Al by decay when quartz is shielded from cosmic rays. Here, we use a global compilation of 26Al and 10Be data generated from quartz-bearing fluvial sediment samples (n = 624, including 121 new measurements) and calculate the discordance between erosion rates derived from each nuclide. We test for correlations between such discordance and topographic metrics for drainage basins, allowing us to infer the likelihood of sediment burial during transport in different geomorphic settings. We find that nearly half of samples (n = 276) exhibit discordance (> 1σ uncertainty) between erosion rates derived from 10Be and 26Al, indicating sediment histories that must include extended burial during residence on hillslopes and/or in the fluvial system after or during initial near-surface exposure. Physical basin parameters such as basin area, slope, and tectonic activity exhibit significant correlation with erosion rate discordance whereas climatic parameters have little correlation. Our analysis suggests that 26Al/10Be erosion rate discordance occurs more regularly in basins larger than 1,000 km2, particularly when such basins have low average slopes and are in tectonically quiescent terrains. Sediment sourced from smaller, steeper basins in tectonically active regions is more likely to have similar 10Be and 26Al erosion rates indicative of limited storage and limited burial during residence in the hillslope and fluvial sediment system. The data and analysis we present demonstrate that paired 26Al and 10Be analyses in detrital fluvial samples can provide a window into watershed processes, elucidating landscape behavior at different spatial scales and allowing a deeper understanding of both sediment routing systems and whether erosion rate assumptions are violated. Large lowland basins are more likely to transport detrital sediment that has experienced prolonged sediment storage and burial either on hillslopes and/or in fluvial networks; thus, erosion rates from such basins are lower limits due to nuclide decay during storage. Conversely, samples from smaller upland basins are more likely to provide reliable erosion rates.
more »
« less
Short communication: Cosmogenic noble gas depletion in soils by wildfire heating
Measurements of cosmic-ray-produced beryllium-10, neon-21, and helium-3 in quartz in a soil profile from a forested landscape in the Oregon Coast Range show that the cosmogenic noble gases 21Ne and 3He are depleted relative to 10Be in the shallow subsurface. The noble gases are mobile in mineral grains via thermally activated diffusion and 10Be is not, implying that noble gas depletion is the result of surface heating by wildfires and subsequent mixing of partially degassed quartz downward into the soil. Cosmogenic noble gas depletion by wildfire heating of soils is a potential means of estimating wildfire intensity and/or frequency over pre-observational timescales.
more »
« less
- Award ID(s):
- 2136934
- PAR ID:
- 10577226
- Publisher / Repository:
- Copernicus/EGU
- Date Published:
- Journal Name:
- Geochronology
- Volume:
- 6
- Issue:
- 1
- ISSN:
- 2628-3719
- Page Range / eLocation ID:
- 71 to 76
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This dataset of detrital cosmogenic 10Be erosion rates from stream sands includes new and previously published measurements, compiled as part of DiBiase et al. (2023). Sample location information has been updated from original publications using field notes, pictures, and new lidar topography to align with correct stream network position. All erosion rates have been recalculated using updated in situ 10Be production rate estimates in quartz, as described in DiBiase et al. (2023). In addition to 10Be data, this dataset also includes catchment-scale topographic, climate, and landslide impact metrics, as described in DiBiase et al. (2023).more » « less
-
Abstract. Measurements of multiple cosmogenic nuclides in a single sample are valuable for various applications of cosmogenic nuclide exposure dating and allow for correcting exposure ages for surface weathering and erosion and establishing exposure–burial history. Here we provide advances in the measurement of cosmogenic 10Be in pyroxene and constraints on the production rate that provide new opportunities for measurements of multi-nuclide systems, such as 10Be/3He, in pyroxene-bearing samples. We extracted and measured cosmogenic 10Be in pyroxene from two sets of Ferrar Dolerite samples collected from the Transantarctic Mountains in Antarctica. One set of samples has 10Be concentrations close to saturation, which allows for the production rate calibration of 10Be in pyroxene by assuming production–decay equilibrium. The other set of samples, which has a more recent exposure history, is used to determine if a rapid fusion method can be successfully applied to samples with Holocene to Last Glacial Maximum exposure ages. From measured 10Be concentrations in the near-saturation sample set we find the production rate of 10Be in pyroxene to be 3.74 ± 0.10 atoms g−1 yr−1, which is consistent with 10Be/3He paired nuclide ratios from samples assumed to have simple exposure. Given the high 10Be concentration measured in this sample set, a sample mass of ∼ 0.5 g of pyroxene is sufficient for the extraction of cosmogenic 10Be from pyroxene using a rapid fusion method. However, for the set of samples that have low 10Be concentrations, measured concentrations were higher than expected. We attribute spuriously high 10Be concentrations to failure in removing all meteoric 10Be and/or a highly variable and poorly quantified procedural blank background correction.more » « less
-
Abstract. We use 25 new measurements of in situ produced cosmogenic 26Al and 10Bein river sand, paired with estimates of dissolved load flux in river water,to characterize the processes and pace of landscape change in central Cuba.Long-term erosion rates inferred from 10Be concentrations in quartzextracted from central Cuban river sand range from3.4–189 Mg km−2 yr−1 (mean 59, median 45). Dissolved loads (10–176 Mg km−2 yr−1; mean 92, median 97), calculated from stream soluteconcentrations and modeled runoff, exceed measured cosmogenic-10Be-derived erosion rates in 18 of 23 basins. This disparity mandatesthat in this environment landscape-scale mass loss is not fully representedby the cosmogenic nuclide measurements. The 26Al / 10Be ratios are lower than expected for steady-state exposure or erosion in 16 of 24 samples. Depressed 26Al / 10Be ratios occur in many of the basins that have the greatest disparity between dissolved loads (high) and erosion rates inferred from cosmogenic nuclide concentrations (low). Depressed 26Al / 10Be ratios are consistentwith the presence of a deep, mixed, regolith layer providing extendedstorage times on slopes and/or burial and extended storage during fluvialtransport. River water chemical analyses indicate that many basins with lower 26Al / 10Be ratios and high 10Be concentrations are underlain at least in part by evaporitic rocks that rapidly dissolve. Our data show that when assessing mass loss in humid tropical landscapes,accounting for the contribution of rock dissolution at depth is particularly important. In such warm, wet climates, mineral dissolution can occur many meters below the surface, beyond the penetration depth of most cosmic rays and thus the production of most cosmogenic nuclides. Our data suggest the importance of estimating solute fluxes and measuring paired cosmogenic nuclides to better understand the processes and rates of mass transfer at a basin scale.more » « less
-
This data file contains the cosmogenic beryllium-10 (10Be), aluminum-26 (26Al), and chlorine-36 (36Cl) data from the frozen sediments underneath the Camp Century ice, produced at the Cosmogenic Nuclide Laboratory of the Lamont-Doherty Earth Observatory within National Science Foundation (NSF) Award 2114634 ('Collaborative Research: A fossil ecosystem under the ice: deciphering the glacialand vegetation history of northwest Greenland using long-lost Camp Century basal sediment'). These data help understanding the complexity of the 3 meters (m) of frozen sediment underneath the Camp Century ice core, and adds constraints to the question of past stability of this sector of the Greenland Ice Sheet. We have processed relatively small sub-samples we received from the University of Vermont team (lead PI Paul Bierman), by separating and de-contaminating quartz and feldspar, and measuring the cosmogenic isotopes listed above down the frozen sediment column. These important and complex data are currently prepared for publication under the lead of Lamont postdoc Joanna Charton.more » « less
An official website of the United States government

