skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Implications of Supramolecular Crosslinking on Hydrogel Toughening by Directional Freeze‐Casting and Salting‐Out
Dynamic hydrogel crosslinking captures network reorganization and self-healing of natural materials, yet is often accompanied by reduced mechanical properties compared to covalent analogues. Toughening is possible in certain materials with processing by directional freeze-casting and salting-out, producing hierarchically organized networks with enhanced mechanical properties. The implications of including dynamic supramolecular crosslinking alongside such processes are unclear. Here, a supramolecular hydrogel prepared from homoternary crosslinking by pendant guests with a free macrocycle is subsequently processed by directional freeze-casting and salting-out. The resulting hydrogels tolerate multiple cycles of compression. Excitingly, supramolecular affinity dictates the mechanical properties of the bulk hydrogels, with higher affinity interactions producing materials with higher Young’s modulus and enhanced toughness under compression. The importance of supramolecular crosslinking is emphasized with a supramolecular complex that is converted in situ into a covalent crosslink. While supramolecular hydrogels do not fracture and spontaneously self-heal when cut, their covalent analogues fracture under moderate strain and do not self-heal. This work shows a molecular-scale origin of bulk hydrogel toughening attributed to affinity and dynamics of supramolecular crosslinking, offering synergy in combination with post-processing techniques to yield materials with enhanced mechanical properties tunable at the molecular scale for the needs of specific applications.  more » « less
Award ID(s):
1944875
PAR ID:
10577911
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
34
Issue:
38
ISSN:
1616-301X
Page Range / eLocation ID:
2402613
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Hydrogels comprise a class of soft materials which are extremely useful in a number of contexts, for example as matrix-mimetic biomaterials for applications in regenerative medicine and drug delivery. One particular subclass of hydrogels consists of materials prepared through non-covalent physical crosslinking afforded by supramolecular recognition motifs. The dynamic, reversible, and equilibrium-governed features of these molecular-scale motifs often transcend length-scales to endow the resulting hydrogels with these same properties on the bulk scale. In efforts to engineer hydrogels of all types with more precise or application-specific uses, inclusion of stimuli-responsive sol–gel transformations has been broadly explored. In the context of biomedical uses, temperature is an interesting stimulus which has been the focus of numerous hydrogel designs, supramolecular or otherwise. Most supramolecular motifs are inherently temperature-sensitive, with elevated temperatures commonly disfavoring motif formation and/or accelerating its dissociation. In addition, supramolecular motifs have also been incorporated for physical crosslinking in conjunction with polymeric or macromeric building blocks which themselves exhibit temperature-responsive changes to their properties. Through molecular-scale engineering of supramolecular recognition, and selection of a particular motif or polymeric/macromeric backbone, it is thus possible to devise a number of supramolecular hydrogel materials to empower a variety of future biomedical applications. 
    more » « less
  2. null (Ed.)
    Hydrogels have gained recent attention for biomedical applications because of their large water content, which imparts biocompatibility. However, their mechanical properties can be limiting. There has been significant recent interest in the strength and fracture toughness of hydrogel materials in addition to their stiffness and time-dependent behavior. Hydrogels can fail in a brittle manner, although they are extremely compliant. In this work, the failure and fracture of hydrogels are examined using a compression test of spherical hydrogel particles. Spheres of commercially available polyacrylamide–potassium polyacrylate were hydrated and tested to failure in compression as a function of loading rate. The spheres exhibited little relaxation when compressed to small fixed displacements. The distributions of strength values obtained were examined in a particle fracture framework previously used for brittle ceramics. There was loading rate dependence apparent in the measured peak force and calculated peak strength values, but the data fell on a single empirical distribution function of strength for the hydrogels regardless of loading rate. Strength values for these hydrogels were mostly in the range of 0.05–0.3 MPa, illustrating the challenges using hydrogels for mechanically demanding applications such as tissue engineering. 
    more » « less
  3. Freeze casting under external fields (magnetic, electric, or acoustic) produces porous materials having local, regional, and global microstructural order in specific directions. In freeze casting, porosity is typically formed by the directional solidification of a liquid colloidal suspension. Adding external fields to the process allows for structured nucleation of ice and manipulation of particles during solidification. External control over the distribution of particles is governed by a competition of forces between constitutional supercooling and electromagnetism or acoustic radiation. Here, we review studies that apply external fields to create porous ceramics with different microstructural patterns, gradients, and anisotropic alignments. The resulting materials possess distinct gradient, core–shell, ring, helical, or long-range alignment and enhanced anisotropic mechanical properties. 
    more » « less
  4. The previously reported Q is a thermoresponsive coiled-coil protein capable of higher-order supramolecular assembly into fibers and hydrogels with upper critical solution temperature (UCST) behavior. Here, we introduce a new coiled-coil protein that is redesigned to disfavor lateral growth of its fibers and thus achieve a higher crosslinking density within the formed hydrogel. We also introduce a favorable hydrophobic mutation to the pore of the coiled-coil domain for increased thermostability of the protein. We note that an increase in storage modulus of the hydrogel and crosslinking density is coupled with a decrease in fiber diameter. We further fully characterize our α-helical coiled-coil (Q2) hydrogel for its structure, nano-assembly, and rheology relative to our previous single domain protein, Q, over the time of its gelation demonstrating the nature of our hydrogel self-assembly system. In this vein, we also characterize the ability of Q2 to encapsulate the small hydrophobic small molecule, curcumin, and its impact on the mechanical properties of Q2. The design parameters here not only show the importance of electrostatic potential in self-assembly but also provide a step towards predictable design of electrostatic protein interactions. 
    more » « less
  5. null (Ed.)
    Abstract Double-network (DN) hydrogels, consisting of two contrasting and interpenetrating polymer networks, are considered as perhaps the toughest soft-wet materials. Current knowledge of DN gels from synthesis methods to toughening mechanisms almost exclusively comes from chemically-linked DN hydrogels by experiments. Molecular modeling and simulations of inhomogeneous DN structure in hydrogels have proved to be extremely challenging. Herein, we developed a new multiscale simulation platform to computationally investigate the early fracture of physically-chemically linked agar/polyacrylamide (agar/PAM) DN hydrogels at a long timescale. A “random walk reactive polymerization” (RWRP) was developed to mimic a radical polymerization process, which enables to construct a physically-chemically linked agar/PAM DN hydrogel from monomers, while conventional and steered MD simulations were conducted to examine the structural-dependent energy dissipation and fracture behaviors at the relax and deformation states. Collective simulation results revealed that energy dissipation of agar/PAM hydrogels was attributed to a combination of the pulling out of agar chains from the DNs, the disruption of massive hydrogen bonds between and within DN structures, and the strong association of water molecules with both networks, thus explaining a different mechanical enhancement of agar/PAM hydrogels. This computational work provided atomic details of network structure, dynamics, solvation, and interactions of a hybrid DN hydrogel, and a different structural-dependent energy dissipation mode and fracture behavior of a hybrid DN hydrogel, which help to design tough hydrogels with new network structures and efficient energy dissipation modes. Additionally, the RWRP algorithm can be generally applied to construct the radical polymerization-produced hydrogels, elastomers, and polymers. 
    more » « less