skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evidence for Topological States and a Lifshitz Transition in Metastable 2 M ‐WSe 2
Abstract In recent years,Tdtransition metal dichalcogenides have been heavily explored for their type‐II Weyl topology, gate‐tunable superconductivity, and nontrivial edge states in the monolayer limit. Here, the Fermi surface characteristics and fundamental transport properties of similarly structured 2M‐WSe2bulk single crystals are investigated. The measurements of the angular dependent Shubnikov–de Haas oscillations, with support from first‐principles calculations, reveal multiple three‐ and two‐dimensional Fermi pockets, one of which exhibits a nontrivial Berry's phase. In addition, it is shown that the electronic properties of 2M‐WSe2are similar to those of orthorhombic MoTe2and WTe2, having a single dominant carrier type at high temperatures that evolves into coexisting electron and hole pockets with near compensation at temperatures below 100 K, suggesting the existence of a Lifshitz transition. Altogether, the observations provide evidence towards the topologically nontrivial electronic properties of 2M‐WSe2and motivate further investigation on the topological properties of 2Mtransition metal dichalcogenides in the atomically thin limit.  more » « less
Award ID(s):
2309000 2338984
PAR ID:
10577941
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Advanced Functional Materials
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Chemical modification is a powerful strategy for tuning the electronic properties of 2D semiconductors. Here we report the electrophilic trifluoromethylation of 2D WSe2and MoS2under mild conditions using the reagent trifluoromethyl thianthrenium triflate (TTT). Chemical characterization and density functional theory calculations reveal that the trifluoromethyl groups bind covalently to surface chalcogen atoms as well as oxygen substitution sites. Trifluoromethylation induces p‐type doping in the underlying 2D material, enabling the modulation of charge transport and optical emission properties in WSe2. This work introduces a versatile and efficient method for tailoring the optical and electronic properties of 2D transition metal dichalcogenides. 
    more » « less
  2. Abstract Stacking two semiconducting transition metal dichalcogenide (MX2) monolayers to form a heterobilayer creates a new variety of semiconductor junction with unique optoelectronic features, such as hosting long-lived dipolar interlayer excitons. Despite many optical, transport, and theoretical studies, there have been few direct electronic structure measurements of these junctions. Here, we apply angle-resolved photoemission spectroscopy with micron-scale spatial resolution (µARPES) to determine the band alignments in MoSe2/WSe2heterobilayers, usingin-situelectrostatic gating to electron-dope and thus probe the conduction band edges. By comparing spectra from heterobilayers with opposite stacking orders, that is, with either MoSe2or WSe2on top, we confirm that the band alignment is type II, with the valence band maximum in the WSe2and the conduction band minimum in the MoSe2. The overall band gap isEG= 1.43 ± 0.03 eV, and to within experimental uncertainty it is unaffected by electron doping. However, the offset between the WSe2and MoSe2valence bands clearly decreases with increasing electron doping, implying band renormalisation only in the MoSe2, the layer in which the electrons accumulate. In contrast,µARPES spectra from a WS2/MoSe2heterobilayer indicate type I band alignment, with both band edges in the MoSe2. These insights into the doping-dependent band alignments and gaps of MX2heterobilayers will be useful for properly understanding and ultimately utilizing their optoelectronic properties. 
    more » « less
  3. Transition metal dichalcogenides (TMDCs) are potential materials for future optoelectronic devices. Grain boundaries (GBs) can significantly influence the optoelectronic properties of TMDC materials. Here, we have investigated the mechanical characteristics of tungsten diselenide (WSe 2 ) monolayers and failure process with symmetric tilt GBs using ReaxFF molecular dynamics simulations. In particular, the effects of topological defects, loading rates, and temperatures are investigated. We considered nine different grain boundary structures of monolayer WSe 2 , of which six are armchair (AC) tilt structures, and the remaining three are zigzag (ZZ) tilt structures. Our results indicate that both tensile strength and fracture strain of WSe 2 with symmetric tilt GBs decrease as the temperature increases. We revealed an interfacial phase transition for high-angle GBs reduces the elastic strain energy within the interface at finite temperatures. Furthermore, brittle cracking is the dominant failure mode in the WSe 2 monolayer with tilted GBs. WSe 2 GB structures showed more strain rate sensitivity at high temperatures than at low temperatures. 
    more » « less
  4. Abstract The ongoing reduction in transistor sizes drives advancements in information technology. However, as transistors shrink to the nanometer scale, surface and edge states begin to constrain their performance. 2D semiconductors like transition metal dichalcogenides (TMDs) have dangling‐bond‐free surfaces, hence achieving minimal surface states. Nonetheless, edge state disorder still limits the performance of width‐scaled 2D transistors. This work demonstrates a facile edge passivation method to enhance the electrical properties of monolayer WSe2nanoribbons, by combining scanning transmission electron microscopy, optical spectroscopy, and field‐effect transistor (FET) transport measurements. Monolayer WSe2nanoribbons are passivated with amorphous WOxSeyat the edges, which is achieved using nanolithography and a controlled remote O2plasma process. The same nanoribbons, with and without edge passivation are sequentially fabricated and measured. The passivated‐edge nanoribbon FETs exhibit 10 ± 6 times higher field‐effect mobility than the open‐edge nanoribbon FETs, which are characterized with dangling bonds at the edges. WOxSeyedge passivation minimizes edge disorder and enhances the material quality of WSe2nanoribbons. Owing to its simplicity and effectiveness, oxidation‐based edge passivation could become a turnkey manufacturing solution for TMD nanoribbons in beyond‐silicon electronics and optoelectronics. 
    more » « less
  5. Abstract Recently, layered transition metal thiophosphate MPX3(M= transition metals,X= S or Se) have gained significant attention because of their rich magnetic, optical, and electronic properties. Specifically, the diverse magnetic structures and the robustness of magnetism in the two-dimensional (2D) limit have made them prominent candidates to study 2D magnetism. Numerous efforts such as substitutions and interlayer intercalations have been adopted to tune the magnetic properties of these materials, which has greatly deepened the understanding of the underlying mechanisms that govern the properties. In this work, we focus on modifying the magnetism of Ising-type antiferromagnet FePS3using electrochemical lithium intercalation. Our work demonstrate the effectiveness of electrochemical intercalation as a controllable tool to modulating magnetism, including tuning magnetic ordering temperature and inducing low temperature spin-glass state, offering an approach for implementing this material into applications. 
    more » « less