This systematic literature review synthesizes published sources from the ASIS&T Digital Library and the ACM Digital Library to develop a definition of the carceral state and to show how the term has been used in contemporary technology‐focused research. The carceral state concept has been adopted and applied widely in multiple areas of social scientific research to refer to the formal institutions of the criminal justice system proper and other social arrangements, ideologies, practices, and technologies that punish, surveil, and contain populations. Our review reveals a recent and increasing engagement with the carceral state in the collections surveyed. Encouraged by this increasing attention, this review is an attempt to introduce the carceral state as a guiding framework for tech‐society research and to consider implications for advancing responsibility, reflexivity, and care in the creation and evaluation of information systems, programs, and services.
more »
« less
This content will become publicly available on January 1, 2026
Data technologies and analytics for policy and governance: a landscape review
Abstract Data for Policy (dataforpolicy.org), a trans-disciplinary community of research and practice, has emerged around the application and evaluation of data technologies and analytics for policy and governance. Research in this area has involved cross-sector collaborations, but the areas of emphasis have previously been unclear. Within the Data for Policy framework of six focus areas, this report offers a landscape review of Focus Area 2: Technologies and Analytics. Taking stock of recent advancements and challenges can help shape research priorities for this community. We highlight four commonly used technologies for prediction and inference that leverage datasets from the digital environment: machine learning (ML) and artificial intelligence systems, the internet-of-things, digital twins, and distributed ledger systems. We review innovations in research evaluation and discuss future directions for policy decision-making.
more »
« less
- Award ID(s):
- 1945332
- PAR ID:
- 10578045
- Publisher / Repository:
- Data and Policy Journal (Cambridge University Press)
- Date Published:
- Journal Name:
- Data & Policy
- Volume:
- 7
- ISSN:
- 2632-3249
- Subject(s) / Keyword(s):
- data science analytics public policy governance
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Sustainable provision of food, energy and clean water requires understanding of the interdependencies among systems as well as the motivations and incentives of farmers and rural policy makers. Agriculture lies at the heart of interactions among food, energy and water systems. It is an increasingly energy intensive enterprise, but is also a growing source of energy. Agriculture places large demands on water supplies while poor practices can degrade water quality. Each of these interactions creates opportunities for modeling driven by sensor-based and qualitative data collection to improve the effectiveness of system operation and control in the short term as well as investments and planning for the long term. The large volume and complexity of the data collected creates challenges for decision support and stakeholder communication. The DataFEWSion National Research Traineeship program aims to build a community of researchers that explores, develops and implements effective data-driven decision-making to efficiently produce food, transform primary energy sources into energy carriers, and enhance water quality. The initial cohort includes PhD students in agricultural and biosystems, chemical, and industrial engineering as well as statistics and crop production and physiology. The project aims to prepare trainees for multiple career paths such as research scientist, bioeconomy entrepreneur, agribusiness leader, policy maker, agriculture analytics specialist, and professor. The traineeship has four key components. First, trainees will complete a new graduate certificate to build competencies in fundamental understanding of interactions among food production, water quality and bioenergy; data acquisition, visualization, and analytics; complex systems modeling for decision support; and the economics, policy and sociology of the FEW nexus. Second, they will conduct interdisciplinary research on (a) technologies and practices to increase agriculture’s contributions to energy supply while reducing its negative impacts on water quality and human health; (b) data science to increase crop productivity within the constraints of sustainable intensification; or (c) decision sciences to manage tradeoffs and promote best practices among diverse stakeholders. Third, they will participate in a new graduate learning community to consist of a two-year series of workshops that focus in alternate years on the context of the Midwest agricultural FEW nexus and professional development; and fourth, they will have small-group experiences to promote collaboration and peer review. Each trainee will create and curate a portfolio that combines artifacts from coursework and research with reflections on the broader impacts of their work. Trainee recruitment emphasizes women and underrepresented groups.more » « less
-
Abstract This paper (Wu 2016), which was published in AI EDAM online on August 22, 2016, has been retracted by Cambridge University Press as it is very similar in content to a published ASME Conference Proceedings paper. The article in question and the ASME Conference Proceedings paper were submitted for review with AI EDAM and the ASME at similar times, but copyright was assigned to ASME before the paper was accepted in AI EDAM and therefore the article in AI EDAM is being retracted. (In recent years, industrial nations around the globe have invested heavily in new technologies, software, and services to advance digital design and manufacturing using cyber-physical systems, data analytics, and high-performance computing. Many of these initiatives, such as cloud-based design and manufacturing, fall under the umbrella of what has become known as Industry 4.0 or Industrial Internet and are often hailed as pillars of a new industrial revolution. While an increasing number of companies are developing or already offer commercial cloud-based software packages and services for digital design and manufacturing, little work has been reported on providing a review of the state of the art of these commercial software and services as well as identifying research gaps in this field. The objective of this paper is to present a state-of-the-art review of digital design and manufacturing software and services that are currently available on the cloud. The focus of this paper is on assessing to what extent engineering design, engineering analysis, manufacturing, and production across all phases of the product development lifecycles can already be performed based on the software and services accessed through the cloud. In addition, the key capabilities and benefits of these software packages and services are discussed. Based on the assessment of the core features of commercial software and services, it can be concluded that almost all phases of product realization can be conducted through digital design and manufacturing software and services on the cloud. Finally, existing research gaps and related challenges to overcome are identified. The state-of-the-art review serves to provide a technology guide for decision makers in their efforts to select suitable cloud-based software and services as alternatives to existing in-house resources as well as to recommend new research areas.)more » « less
-
null (Ed.)In the past few decades, we have witnessed tremendous advancements in biology, life sciences and healthcare. These advancements are due in no small part to the big data made available by various high-throughput technologies, the ever-advancing computing power, and the algorithmic advancements in machine learning. Specifically, big data analytics such as statistical and machine learning has become an essential tool in these rapidly developing fields. As a result, the subject has drawn increased attention and many review papers have been published in just the past few years on the subject. Different from all existing reviews, this work focuses on the application of systems, engineering principles and techniques in addressing some of the common challenges in big data analytics for biological, biomedical and healthcare applications. Specifically, this review focuses on the following three key areas in biological big data analytics where systems engineering principles and techniques have been playing important roles: the principle of parsimony in addressing overfitting, the dynamic analysis of biological data, and the role of domain knowledge in biological data analytics.more » « less
-
PurposeThe research enterprise within higher education is becoming more competitive as funding agencies require more collaborative research projects, higher-level of accountability and competition for limited resources. As a result, research analytics has emerged as a field, like many other areas within higher education to act as a data-informed unit to better understand how research institutions can effectively grow their research strategy. This is a new and emerging field within higher education. Design/methodology/approachAs businesses and other industries are embracing recent advances in data technologies such as cloud computing and big data analytic tools to inform decision making, research administration in higher education is seeing a potential in incorporating advanced data analytics to improve day-to-day operations and strategic advancement in institutional research. This paper documents the development of a survey measuring research administrators’ perspectives on how higher education and other research institutions perceive the use of data and analytics within the research administration functions. The survey development process started with composing a literature review on recent developments in data analytics within the research administration in the higher education domain, from which major components of data analytics in research administration were conceptualized and identified. This was followed by an item matrix mapping the evidence from literature with corresponding, newly drafted survey items. After revising the initial survey based on suggestions from a panel of subject matter experts to review, a pilot study was conducted using the revised survey instrument and validated by employing the Rasch measurement analysis. FindingsAfter revising the survey based on suggestions from the subject matter experts, a pilot study was conducted using the revised survey instrument. The resultant survey instrument consists of six dimensions and 36 survey items with an establishment of reasonable item fit, item separation and reliability. This survey protocol is useful for higher educational institutions to gauge research administrators’ perceptions of the culture of data analytics use in the workplace. Suggestions for future revisions and potential use of the survey were made. Originality/valueVery limited scholarly work has been published on this topic. The use of data-informed and data-driven approaches with in research strategy within higher education is an emerging field of study and practice.more » « less
An official website of the United States government
