skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cascade of Phase Transitions and Large Magnetic Anisotropy in a Triangle-Kagome-Triangle Trilayer Antiferromagnet
Award ID(s):
1834750
PAR ID:
10578078
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
Chemistry of Materials
Volume:
36
Issue:
19
ISSN:
0897-4756
Page Range / eLocation ID:
9516 to 9525
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Listing and counting triangles in graphs is a key algorithmic kernel for network analyses including community detection, clustering coefficients, k-trusses, and triangle centrality. We design and implement a new serial algorithm for triangle counting that performs competitively with the fastest previous approaches on both real and synthetic graphs, such as those from the Graph500 Benchmark and the MIT/Amazon/IEEE Graph Challenge. The experimental results use the recently-launched Intel Xeon Platinum 8480+ and CPU Max 9480 processors. 
    more » « less
  2. Listing and counting triangles in graphs is a key algorithmic kernel for network analyses including community detection, clustering coefficients, k-trusses, and triangle centrality. We design and implement a new serial algorithm for triangle counting that performs competitively with the fastest previous approaches on both real and synthetic graphs, such as those from the Graph500 Benchmark and the MIT/Amazon/IEEE Graph Challenge. The experimental results use the recently-launched Intel Xeon Platinum 8480+ and CPU Max 9480 processors. 
    more » « less
  3. There are a wide number of graph centrality metrics. Further, the performance of each can vary widely depending on the type of implementation. In this work we present our implementation of triangle centrality in Arkouda with several different triangle counting methods. Triangle Centrality is a robust metric that captures the centrality of a vertex through both a vertex’s own connectedness and that of its neighbors. Arkouda is an open-source framework for data science at the scale of terabytes and beyond. These methods are compared against each other and another shared memory implementation. 
    more » « less