Given the availability of abundant data, deep learning models have been advanced and become ubiquitous in the past decade. In practice, due to many different reasons (e.g., privacy, usability, and fidelity), individuals also want the trained deep models to forget some specific data. Motivated by this, machine unlearning (also known as selective data forgetting) has been intensively studied, which aims at removing the influence that any particular training sample had on the trained model during the unlearning process. However, people usually employ machine unlearning methods as trusted basic tools and rarely have any doubt about their reliability. In fact, the increasingly critical role of machine unlearning makes deep learning models susceptible to the risk of being maliciously attacked. To well understand the performance of deep learning models in malicious environments, we believe that it is critical to study the robustness of deep learning models to malicious unlearning attacks, which happen during the unlearning process. To bridge this gap, in this paper, we first demonstrate that malicious unlearning attacks pose immense threats to the security of deep learning systems. Specifically, we present a broad class of malicious unlearning attacks wherein maliciously crafted unlearning requests trigger deep learning models to misbehave on target samples in a highly controllable and predictable manner. In addition, to improve the robustness of deep learning models, we also present a general defense mechanism, which aims to identify and unlearn effective malicious unlearning requests based on their gradient influence on the unlearned models. Further, theoretical analyses are conducted to analyze the proposed methods. Extensive experiments on real-world datasets validate the vulnerabilities of deep learning models to malicious unlearning attacks and the effectiveness of the introduced defense mechanism.
more »
« less
A survey of security and privacy issues of machine unlearning
Abstract Machine unlearning is a cutting‐edge technology that embodies the privacy legal principle of the right to be forgotten within the realm of machine learning (ML). It aims to remove specific data or knowledge from trained models without retraining from scratch and has gained significant attention in the field of artificial intelligence in recent years. However, the development of machine unlearning research is associated with inherent vulnerabilities and threats, posing significant challenges for researchers and practitioners. In this article, we provide the first comprehensive survey of security and privacy issues associated with machine unlearning by providing a systematic classification across different levels and criteria. Specifically, we begin by investigating unlearning‐based security attacks, where adversaries exploit vulnerabilities in the unlearning process to compromise the security of machine learning (ML) models. We then conduct a thorough examination of privacy risks associated with the adoption of machine unlearning. Additionally, we explore existing countermeasures and mitigation strategies designed to protect models from malicious unlearning‐based attacks targeting both security and privacy. Further, we provide a detailed comparison between machine unlearning‐based security and privacy attacks and traditional malicious attacks. Finally, we discuss promising future research directions for security and privacy issues posed by machine unlearning, offering insights into potential solutions and advancements in this evolving field.
more »
« less
- Award ID(s):
- 2350332
- PAR ID:
- 10578212
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- AI Magazine
- Volume:
- 46
- Issue:
- 1
- ISSN:
- 0738-4602
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
As privacy concerns escalate in the realm of machine learning, data owners now have the option to utilize machine unlearning to remove their data from machine learning models, following recent legislation. To enhance transparency in machine unlearning and avoid potential dishonesty by model providers, various verification strategies have been proposed. These strategies enable data owners to ascertain whether their target data has been effectively unlearned from the model. However, our understanding of the safety issues of machine unlearning verification remains nascent. In this paper, we explore the novel research question of whether model providers can circumvent verification strategies while retaining the information of data supposedly unlearned. Our investigation leads to a pessimistic answer: \textit{the verification of machine unlearning is fragile}. Specifically, we categorize the current verification strategies regarding potential dishonesty among model providers into two types. Subsequently, we introduce two novel adversarial unlearning processes capable of circumventing both types. We validate the efficacy of our methods through theoretical analysis and empirical experiments using real-world datasets. This study highlights the vulnerabilities and limitations in machine unlearning verification, paving the way for further research into the safety of machine unlearning.more » « less
-
Vehicular Ad-hoc Networks (VANETs) are a crucial component of Cooperative Intelligent Transportation Systems (C-ITS), enabling vehicles to communicate and share vital information to enhance road safety and efficiency. Basic Safety Messages (BSMs), periodically broadcast by vehicles to provide real-time kinematic data, form the foundation of numerous safety applications within VANETs. Ensuring the security of BSMs is paramount, as malicious entities can exploit vulnerabilities to launch attacks that could have catastrophic consequences. In this study, we provide a comprehensive analysis of BSM attacks and detection mechanisms in VANETs. We begin by outlining the system model, security requirements, and attacker models relevant to BSMs. Then, we categorize and describe a range of attacks, from simple position falsification to more sophisticated and evasive techniques, such as the SixPack attack. We also classify existing attack detection methods into machine learning-based, deep learning-based, plausibility and consistency-based, and software-defined networking (SDN)-based mechanisms, analyzing their effectiveness and limitations. Additionally, we highlight the challenges in securing BSMs, such as the trade-off between model accuracy and real-time performance. Future research directions are also discussed. This survey paper serves as a foundational step towards building safe, secure, and reliable cooperative intelligent transportation systems and their associated applications.more » « less
-
Machine learning (ML) models can be trade secrets due to their development cost. Hence, they need protection against malicious forms of reverse engineering (e.g., in IP piracy). With a growing shift of ML to the edge devices, in part for performance and in part for privacy benefits, the models have become susceptible to the so-called physical side-channel attacks. ML being a relatively new target compared to cryptography poses the problem of side-channel analysis in a context that lacks published literature. The gap between the burgeoning edge-based ML devices and the research on adequate defenses to provide side-channel security for them thus motivates our study. Our work develops and combines different flavors of side-channel defenses for ML models in the hardware blocks. We propose and optimize the first defense based on Boolean masking . We first implement all the masked hardware blocks. We then present an adder optimization to reduce the area and latency overheads. Finally, we couple it with a shuffle-based defense. We quantify that the area-delay overhead of masking ranges from 5.4× to 4.7× depending on the adder topology used and demonstrate a first-order side-channel security of millions of power traces. Additionally, the shuffle countermeasure impedes a straightforward second-order attack on our first-order masked implementation.more » « less
-
Privacy attacks on machine learning models aim to identify the data that is used to train such models. Such attacks, traditionally, are studied on static models that are trained once and are accessible by the adversary. Motivated to meet new legal requirements, many machine learning methods are recently extended to support machine unlearning, i.e., updating models as if certain examples are removed from their training sets, and meet new legal requirements. However, privacy attacks could potentially become more devastating in this new setting, since an attacker could now access both the original model before deletion and the new model after the deletion. In fact, the very act of deletion might make the deleted record more vulnerable to privacy attacks. Inspired by cryptographic definitions and the differential privacy framework, we formally study privacy implications of machine unlearning. We formalize (various forms of) deletion inference and deletion reconstruction attacks, in which the adversary aims to either identify which record is deleted or to reconstruct (perhaps part of) the deleted records. We then present successful deletion inference and reconstruction attacks for a variety of machine learning models and tasks such as classification, regression, and language models. Finally, we show that our attacks would provably be precluded if the schemes satisfy (variants of) deletion compliance (Garg, Goldwasser, and Vasudevan, Eurocrypt’20).more » « less
An official website of the United States government
