skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 22, 2026

Title: Image Segmentation by Latent Space Phase-Gating with Applications in High-Content Screening
Schistosomiasis is a parasitic disease with significant global health and socio-economic implications. Drug discovery for schistosomiasis typically involves high-content whole-organism screening. In this approach, parasites are ex-posed to various chemical compounds and their systemic, whole-organism-level responses are captured via microscopy and analyzed to obtain a quanti-tative assessment of chemical effect. These effects are multidimensional and time-varying, impacting shape, appearance, and behavior. Accurate identifi-cation of object boundaries is essential for preparing images for subsequent analysis in high-content studies. Object segmentation is one of the most deeply studied problems in computer vision where recent efforts have incor-porated deep learning. Emerging results indicate that acquiring robust fea-tures in spectral domain using Fast Fourier Transform (FFT) within Deep Neural Networks (DNNs) can enhance segmentation accuracy. In this paper, we explore this direction further and propose a latent space Phase-Gating (PG) method that builds upon FFT and leverages phase information to effi-ciently identify globally significant features. While the importance of phase in analyzing signals has long been known, technical difficulties in calculat-ing phase in manners that are invariant to imaging parameters has limited its use. A key result of this paper is to show how phase information can be in-corporated in neural architectures that are compact. Experiments conducted on complex HCS datasets demonstrate how this idea leads to improved seg-mentation accuracy, while maintaining robustness against commonly en-countered noise (blurring) in HCS. The compactness of the proposed method also makes it well-suited for application specific architectures (ASIC) de-signed for high-content screening.  more » « less
Award ID(s):
1817239 2401096
PAR ID:
10578379
Author(s) / Creator(s):
;
Editor(s):
Bebis, G
Publisher / Repository:
Springer
Date Published:
ISBN:
978-3-031-77388-4
Format(s):
Medium: X
Location:
Berlin
Sponsoring Org:
National Science Foundation
More Like this
  1. The presence of fog in the background can prevent small and distant objects from being detected, let alone tracked. Under safety-critical conditions, multi-object tracking models require faster tracking speed while maintaining high object-tracking accuracy. The original DeepSORT algorithm used YOLOv4 for the detection phase and a simple neural network for the deep appearance descriptor. Consequently, the feature map generated loses relevant details about the track being matched with a given detection in fog. Targets with a high degree of appearance similarity on the detection frame are more likely to be mismatched, resulting in identity switches or track failures in heavy fog. We propose an improved multi-object tracking model based on the DeepSORT algorithm to improve tracking accuracy and speed under foggy weather conditions. First, we employed our camera-radar fusion network (CR-YOLOnet) in the detection phase for faster and more accurate object detection. We proposed an appearance feature network to replace the basic convolutional neural network. We incorporated GhostNet to take the place of the traditional convolutional layers to generate more features and reduce computational complexities and costs. We adopted a segmentation module and fed the semantic labels of the corresponding input frame to add rich semantic information to the low-level appearance feature maps. Our proposed method outperformed YOLOv5 + DeepSORT with a 35.15% increase in multi-object tracking accuracy, a 32.65% increase in multi-object tracking precision, a speed increase by 37.56%, and identity switches decreased by 46.81%. 
    more » « less
  2. Vedaldi, A. (Ed.)
    In state-of-the-art deep neural networks, both feature normalization and feature attention have become ubiquitous. They are usually studied as separate modules, however. In this paper, we propose a light-weight integration between the two schema and present Attentive Normalization (AN). Instead of learning a single affine transformation, AN learns a mixture of affine transformations and utilizes their weighted-sum as the final affine transformation applied to re-calibrate features in an instance-specific way. The weights are learned by leveraging channel-wise feature attention. In experiments, we test the proposed AN using four representative neural architectures. In the ImageNet-1000 classification benchmark and the MS-COCO 2017 object detection and instance segmentation benchmark. AN obtains consistent performance improvement for different neural architectures in both benchmarks with absolute increase of top-1 accuracy in ImageNet-1000 between 0.5\% and 2.7\%, and absolute increase up to 1.8\% and 2.2\% for bounding box and mask AP in MS-COCO respectively. We observe that the proposed AN provides a strong alternative to the widely used Squeeze-and-Excitation (SE) module. The source codes are publicly available at \href{https://github.com/iVMCL/AOGNet-v2}{the ImageNet Classification Repo} and \href{https://github.com/iVMCL/AttentiveNorm\_Detection}{the MS-COCO Detection and Segmentation Repo}. 
    more » « less
  3. Accurate cell instance segmentation plays an important role in the study of neural cell interactions, which are critical for understanding the development of brain. These interactions are performed through the filopodia and lamellipodia of neural cells, which are extremely tiny structures and as a result render most existing instance segmentation methods powerless to precisely capture them. To solve this issue, in this paper we present a novel hierarchical neural network comprising object detection and segmentation modules. Compared to previous work, our model is able to efficiently share and make full use of the information at different levels between the two modules. Our method is simple yet powerful, and experimental results show that it captures the contours of neural cells, especially the filopodia and lamellipodia, with high accuracy, and outperforms recent state of the art by a large margin. 
    more » « less
  4. null (Ed.)
    Abstract Deep neural networks (DNNs) have achieved state-of-the-art performance in many important domains, including medical diagnosis, security, and autonomous driving. In domains where safety is highly critical, an erroneous decision can result in serious consequences. While a perfect prediction accuracy is not always achievable, recent work on Bayesian deep networks shows that it is possible to know when DNNs are more likely to make mistakes. Knowing what DNNs do not know is desirable to increase the safety of deep learning technology in sensitive applications; Bayesian neural networks attempt to address this challenge. Traditional approaches are computationally intractable and do not scale well to large, complex neural network architectures. In this paper, we develop a theoretical framework to approximate Bayesian inference for DNNs by imposing a Bernoulli distribution on the model weights. This method called Monte Carlo DropConnect (MC-DropConnect) gives us a tool to represent the model uncertainty with little change in the overall model structure or computational cost. We extensively validate the proposed algorithm on multiple network architectures and datasets for classification and semantic segmentation tasks. We also propose new metrics to quantify uncertainty estimates. This enables an objective comparison between MC-DropConnect and prior approaches. Our empirical results demonstrate that the proposed framework yields significant improvement in both prediction accuracy and uncertainty estimation quality compared to the state of the art. 
    more » « less
  5. Scene reconstruction using Monodepth2 (Monocular Depth Inference) which provides depth maps from a single RGB camera, the outputs are filled with noise and inconsistencies. Instance segmentation using a Mask R-CNN (Region Based Convolution Neural Networks) deep model can provide object segmentation results in 2D but lacks 3D information. In this paper we propose to integrate the results of Instance segmentation via Mask R-CNN’s, CAD model Car Shape Alignment, and depth from Monodepth2 together with classical dynamic vision techniques to create a High-level Semantic Model with separability, robustness, consistency and saliency. The model is useful for both virtualized rendering, semantic augmented reality and automatic driving. Experimental results are provided to validate the approach. 
    more » « less