skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 5, 2026

Title: Analysis of Fentanyl and Fentanyl Analogs Using Atmospheric Pressure Chemical Ionization Gas Chromatography–Mass Spectrometry (APCI-GC-MS)
Illicit fentanyl and fentanyl analogs are a growing concern in the United States as opioid related deaths rise. Given that fentanyl analogs are readily obtained by modifying the structure of fentanyl, illicit fentanyl analogs appearing on the black market often contain similar structures, making analogue differentiation and identification difficult. Thus, obtaining both precursor and product ion data during analysis is becoming increasingly valuable in fentanyl analog characterization. In this paper, we provide GC column retention time, precursor, and product ion mass spectrum data for 74 fentanyl analogs that were analyzed using atmospheric pressure chemical ionization-gas chromatography−mass spectrometry (APCI-GC-MS) utilizing a triple quadrupole mass analyzer. During analysis, precursor ions underwent collision induced dissociation (CID) by increasing the collision energy (10, 20, 30, 40, and 50 V) throughout a single run. Data reveal that APCI readily produces product ions of the piperidine and N-alkyl chain but rarely provides data on the acyl group. Furthermore, fentanyl analogs with greater substitution at the N-alkyl chain demonstrate a greater preference for dissociation at the N-αC and αC-βC bond, while greater substitution at the amide group leads to fragmentation at the N−C4 bond.  more » « less
Award ID(s):
1757946
PAR ID:
10578605
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
Journal of the American Society for Mass Spectrometry
Volume:
36
Issue:
3
ISSN:
1044-0305
Page Range / eLocation ID:
587 to 600
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Fentanyl analogues and their positional isomers have similar chemical structural configurations making them difficult to identify and differentiate. Gas chromatography coupled to a gas-phase infrared detector (GC-IRD) is a useful and powerful tool for the unambiguous identification of fentanyl compounds where traditional analytical techniques such as gas chromatography–mass spectrometry (GC–MS) offer limited information for this class of compounds. In this study, we demonstrate the utility of GC-IRD and show how this complementary information enables the identification of fentanyl analogues (2- and 3- furanylfentanyl, 2-furanylbenzylfentanyl, croto- nylfentanyl, cyclopropylfentanyl, methoxyacetylfentanyl, carfentanil, meta-fluoroisobutyryl fentanyl, para- fluoroisobutyryl fentanyl and ortho-fluoroisobutyryl fentanyl) when combined with GC–MS data. A description of the operating conditions including how the optimization of GC-IRD parameters can enhance the spectral resolution and unambiguous identification of these fentanyl analogues is presented, for the first time. In par- ticular, the effects of light pipe temperatures, acquisition resolution, the use of a programmed temperature vaporizing (PTV) inlet, and the analytical concentration of the sample were evaluated. A real-world case ex- ncountered in casework and how the implementation of GC- of these challenges in fentanyl differentiation and identification. 
    more » « less
  2. We present cryogenic infrared spectra of sodiated β-cyclodextrin [β-CD + Na] + , a common cyclic oligosaccharide, and its main dissociation products upon collision-induced dissociation (CID). We characterize the parent ions using high-resolution ion mobility spectrometry and cryogenic infrared action spectroscopy, while the fragments are characterized by their mass and cryogenic infrared spectra. We observe sodium-cationized fragments that differ in mass by 162 u, corresponding to B n /Z m ions. For the m / z 347 product ion, electronic structure calculations are consistent with formation of the lowest energy 2-ketone B 2 ion structure. For the m / z 509 product ion, both the calculated 2-ketone B 3 and the Z 3 structures show similarities with the experimental spectrum. The theoretical structure most consistent with the spectrum of the m / z 671 ions is a slightly higher energy 2-ketone B 4 structure. Overall, the data suggest a consistent formation mechanism for all the observed fragments. 
    more » « less
  3. Abstract BackgroundFentanyl test strips (FTS) are a commonly deployed tool in drug checking, used to test for the presence of fentanyl in street drug samples prior to consumption. Previous reports indicate that in addition to fentanyl, FTS can also detect fentanyl analogs like acetyl fentanyl and butyryl fentanyl, with conflicting reports on their ability to detect fentanyl analogs like Carfentanil and furanyl fentanyl. Yet with hundreds of known fentanyl analogs, there has been no large-scale study rationalizing FTS reactivity to different fentanyl analogs. MethodsIn this study, 251 synthetic opioids—including 214 fentanyl analogs—were screened on two brands of fentanyl test strips to (1) assess the differences in the ability of two brands of fentanyl test strips to detect fentanyl-related compounds and (2) determine which moieties in fentanyl analog chemical structures are most crucial for FTS detection. Two FTS brands were assessed in this study: BTNX Rapid Response and WHPM DanceSafe. ResultsOf 251 screened compounds assessed, 121 compounds were detectable at or below 20,000 ng/mL by both BTNX and DanceSafe FTS, 50 were not detectable by either brand, and 80 were detectable by one brand but not the other (n = 52 BTNX,n = 28 DanceSafe). A structural analysis of fentanyl analogs screened revealed that in general, bulky modifications to the phenethyl moiety inhibit detection by BTNX FTS while bulky modifications to the carbonyl moiety inhibit detection by DanceSafe FTS. ConclusionsThe different “blind spots” are caused by different haptens used to elicit the antibodies for these different strips. By utilizing both brands of FTS in routine drug checking, users could increase the chances of detecting fentanyl analogs in the “blind spot” of one brand. 
    more » « less
  4. RationaleThe function of a protein or the binding affinity of an antibody can be substantially altered by the replacement of leucine (Leu) with isoleucine (Ile), and vice versa, so the ability to identify the correct isomer using mass spectrometry can help resolve important biological questions. Tandem mass spectrometry approaches for Leu/Ile (Xle) discrimination have been developed, but they all have certain limitations. MethodsFour model peptides and two wild‐type peptide sequences containing either Leu or Ile residues were subjected to charge transfer dissociation (CTD) mass spectrometry on a modified three‐dimensional ion trap. The peptides were analyzed in both the 1+ and 2+ charge states, and the results were compared to conventional collision‐induced dissociation spectra of the same peptides obtained using the same instrument. ResultsCTD resulted in 100% sequence coverage for each of the studied peptides and provided a variety of side‐chain cleavages, includingd,wandvions. Using CTD, reliabledandwions of Xle residues were observed more than 80% of the time. When present,dions are typically greater than 10% of the abundance of the correspondingaions from which they derive, andwions are typically more abundant than thezions from which they derive. ConclusionsCTD has the benefit of being applicable to both 1+ and 2+ precursor ions, and the overall performance is comparable to that of other high‐energy activation techniques like hot electron capture dissociation and UV photodissociation. CTD does not require chemical modifications of the precursor peptides, nor does it require additional levels of isolation and fragmentation. 
    more » « less
  5. Abstract Alkali and alkaline earth metal adducts of a branched glycan, XXXG, were analyzed with helium charge transfer dissociation (He‐CTD) and low‐energy collision‐induced dissociation (LE‐CID) to investigate if metalation would impact the type of fragments generated and the structural characterization of the analyte. The studied adducts included 1+ and 2+ precursors involving one or more of the cations: H+, Na+, K+, Ca2+, and Mg2+. Regardless of the metal adduct, He‐CTD generated abundant and numerous glycosidic and cross‐ring cleavages that were structurally informative and able to identify the 1,4‐linkage and 1,6‐branching patterns. In contrast, the LE‐CID spectra mainly contained glycosidic cleavages, consecutive fragments, and numerous neutral losses, which complicated spectral interpretation. LE‐CID of [M + K + H]2+and [M + Na]+precursors generated a few cross‐ring cleavages, but they were not sufficient to identify the 1,4‐linkage and 1,6‐branching pattern of the XXXG xyloglucan. He‐CTD predominantly generated 1+ fragments from 1+ precursors and 2+ product ions from 2+ precursors, although both LE‐CID and He‐CTD were able to generate 1+ product ions from 2+ adducts of magnesium and calcium. The singly charged fragments derive from the loss of H+from the metalated product ions and the formation of a protonated complementary product ion; such observations are similar to previous reports for magnesium and calcium salts undergoing electron capture dissociation (ECD) activation. However, during He‐CTD, the [M + Mg]2+precursor generated more singly charged product ions than [M + Ca]2+, either because Mg has a higher second ionization potential than Ca or because of conformational differences and the locations of the charging adducts during fragmentation. He‐CTD of the [M + 2Na]2+and the [M + 2 K]2+precursors generated singly charged product ions from the loss of a sodium ion and potassium ion, respectively. In summary, although the metal ions influence the mass and charge state of the observed product ions, the metal ions had a negligible effect on the types of cross‐ring cleavages observed. 
    more » « less