Abstract During November 2018–April 2019, an 11-station very high frequency (VHF) Lightning Mapping Array (LMA) was deployed to Córdoba Province, Argentina. The purpose of the LMA was validation of the Geostationary Lightning Mapper (GLM), but the deployment was coordinated with two field campaigns. The LMA observed 2.9 million flashes (≥ five sources) during 163 days, and level-1 (VHF locations), level-2 (flashes classified), and level-3 (gridded products) datasets have been made public. The network’s performance allows scientifically useful analysis within 100 km when at least seven stations were active. Careful analysis beyond 100 km is also possible. The LMA dataset includes many examples of intense storms with extremely high flash rates (>1 s−1), electrical discharges in overshooting tops (OTs), as well as anomalously charged thunderstorms with low-altitude lightning. The modal flash altitude was 10 km, but many flashes occurred at very high altitude (15–20 km). There were also anomalous and stratiform flashes near 5–7 km in altitude. Most flashes were small (<50 km2 area). Comparisons with GLM on 14 and 20 December 2018 indicated that GLM most successfully detected larger flashes (i.e., more than 100 VHF sources), with detection efficiency (DE) up to 90%. However, GLM DE was reduced for flashes that were smaller or that occurred lower in the cloud (e.g., near 6-km altitude). GLM DE also was reduced during a period of OT electrical discharges. Overall, GLM DE was a strong function of thunderstorm evolution and the dominant characteristics of the lightning it produced. 
                        more » 
                        « less   
                    
                            
                            Continuing Current Seen Above and Below the Cloud: Comparing Observations From GLM and High‐Speed Video Cameras
                        
                    
    
            Abstract This study assesses the reliability and limitations of the Geostationary Lightning Mapper (GLM) in detecting continuing currents by comparing observations from ground‐based high‐speed cameras with GLM‐16 data. Our findings show that the GLM's one‐group detection efficiency (DE_1) is 53%, while the more stringent five‐consecutive‐group detection efficiency (DE_5) is 10%. Optical signals detected by the GLM predominantly occur during the early stages of continuing currents. Additionally, there is a notable disparity in detection efficiencies between positive and negative continuing currents, with positive continuing currents being detected more frequently. The application of the logistic regression model developed by Fairman and Bitzer (2022) further illustrates the limitations in continuing current identification. The study underscores the challenges of relying solely on satellite data to monitor and analyze continuing currents, emphasizing the need for advancements in detection technologies and methodologies to reliably detect continuing current at a large spatial scale. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10579005
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 51
- Issue:
- 15
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Transformer is an algorithm that adopts self‐attention architecture in the neural networks and has been widely used in natural language processing. In the current study, we apply Transformer architecture to detect DNA methylation on ionic signals from Oxford Nanopore sequencing data. We evaluated this idea using real data sets (Escherichia colidata and the human genome NA12878 sequenced by Simpsonet al.) and demonstrated the ability of Transformers to detect methylation on ionic signal data. BackgroundOxford Nanopore long‐read sequencing technology addresses current limitations for DNA methylation detection that are inherent in short‐read bisulfite sequencing or methylation microarrays. A number of analytical tools, such as Nanopolish, Guppy/Tombo and DeepMod, have been developed to detect DNA methylation on Nanopore data. However, additional improvements can be made in computational efficiency, prediction accuracy, and contextual interpretation on complex genomics regions (such as repetitive regions, low GC density regions). MethodIn the current study, we apply Transformer architecture to detect DNA methylation on ionic signals from Oxford Nanopore sequencing data. Transformer is an algorithm that adopts self‐attention architecture in the neural networks and has been widely used in natural language processing. ResultsCompared to traditional deep‐learning method such as convolutional neural network (CNN) and recurrent neural network (RNN), Transformer may have specific advantages in DNA methylation detection, because the self‐attention mechanism can assist the relationship detection between bases that are far from each other and pay more attention to important bases that carry characteristic methylation‐specific signals within a specific sequence context. ConclusionWe demonstrated the ability of Transformers to detect methylation on ionic signal data.more » « less
- 
            Abstract High‐speed video data were used to analyze the initiation and propagation of 36 needles and their associated 306 flickering events observed in a single‐stroke positive cloud‐to‐ground (+CG) flash. The needles occurred during the return‐stroke later stage and the continuing current, within approximate 10 ms after the onset of the +CG return stroke. They initiated near the lateral surface of the predominantly horizontal channel and extended almost perpendicular to that channel. Flickering events are recoil type streamers (or leaders) that retrace the channels created by needles. Flickering events can be repetitive and are classified into four categories based on different scenarios of their occurrence. Needles are caused by the radial motion of negative charge from the hot core of the positive‐leader channel into the positive corona sheath surrounding the core, when the core is rapidly recharged (its radial electric field reversed) by the return‐stroke process and during the following continuing current.more » « less
- 
            Gigantic jets (GJs) are a type of transient luminous event (TLE) which also includes sprites, elves, halos, and blue jets [Pasko2010, doi: 10.1029/2009JA014860]. However, GJs are unique in that they directly couple electric charge reservoirs in the troposphere (i.e. thunderclouds) with the lower ionosphere, allowing significant amounts of charge (100s of C) to flow between these regions. We do not understand how this affects the ionosphere and global electric circuit. Past observations are very limited, resulting from ground-based cameras getting lucky enough to capture an event while looking over a distant thunderstorm [Liu et al. 2015, doi: 10.1038/ncomms6995]. Additionally, GJ-producing storms are normally accompanied by substantial areas of stratiformclouds obscuring the view, and they tend to occur more often over the ocean. To solve this problem of limited detection capability, we have developed a pipeline that utilizes machine learning and sensor fusion of multiple sensing modalities (optical, VLF, ELF). Our pipeline can detect GJs over nearly a hemisphere and operate 24/7, potentially revolutionizing how GJs are detected and paving the way for other TLE and unique lightning event detection. Our pipeline begins by performing detection with data from the Geostationary Lightning Mapper (GLM), which is a staring optical imager in geostationary orbit that detects the 777.4 nm (OI) triplet from lightning leaders [Goodman et al. 2013, doi: 10.1016/j.atmosres.2013.01.006]. Gigantic jets have unique signatures in the GLM data from past studies [Boggs et al. 2019, doi: 10.1029/2019GL082278]. We have developed a supervised, ensemble machine learning classifier that detects potential gigantic jets in the GLM data. Considering we have an imbalanced dataset, we use data imbalance techniques such as Synthetic Minority Oversampling Technique (SMOTE) when training the classifier. Next, we combine data from multiple sensing modalities to vet the candidate GJs from the classifier in multiple stages. The first stage filters the candidate GJs to the stereo GLM region [Mach and Virts, 2021, doi: 10.1175/JTECH-D-21-0078.1], and calculates the stereo altitudes for all the events. GJs have stereo altitude sources consistently between 15-25 km altitude from the leader escaping the cloud top [Boggs et al. 2022, doi: 10.1126/sciadv.abl8731]. Next, we match the events spatiotemporally to GLD360 data to remove cloud-to-ground events. Subsequently, we use a statistical GOES ABI model (developed at GTRI) to filter out events that have differing parent storms from our truth database. Finally, we use a multi-parameter extremely low frequency (ELF) vetting model (developed by Duke) to filter out the remaining non-GJ events. After a few complete detection and vetting cycles, we have found tens of new events with a high degree of confidence. With further development of our pipeline and deployment to the entire GLM field-of-view (not limited to stereo region), we anticipate hundreds of new detections per year, significantly more than ground-based cameras, allowing for comprehensive studies relating gigantic jets to the other atmospheric phenomenamore » « less
- 
            Gigantic jets are a type of transient luminous event (TLE, Pasko 2010, doi: 10.1029/2009JA014860) that escape the cloud top of a thunderstorm and propagate up to the lower ionosphere (80-100 km altitude), transferring tens to hundreds of Coulombs of charge. Due to rarity of observations, it is still not understood how they affect the lower ionosphere and what storm systems produce them. In this presentation we will provide an overview and present preliminary results from a multi-institutional collaborative project, which seeks to detect gigantic jets over hemispheric scales using a combination of orbital and ground-based sensors and machine learning. Our pipeline has the potential to detect significantly more gigantic jets (thousands) than current methods, which relies on using ground-based cameras. We will build a large database of gigantic jet detections, and correlate the events with a Very Low Frequency (VLF) remote sensing network (Cohen et al. 2009, doi: 10.1109/TGRS.2009.2028334) to understand how they perturb the lower ionosphere – in addition to other meteorological datasets. Our detection methodology primarily uses the Geostationary Lightning Mapper (GLM), which is a staring optical imager in geostationary orbit that detects the 777.4 nm (OI) triplet commonly emitted by lightning (Goodman et al. 2013, doi: 10.1016/j.atmosres.2013.01.006). Gigantic jets have been shown to have unique signatures in the GLM data from past studies (Boggs et al. 2019, doi: 10.1029/2019GL082278; Boggs et al. 2022, doi: 10.1126/sciadv.abl8731). Thus far, we have built a preliminary, supervised machine learning model that detects potential gigantic jets using GLM, and begun development on a series of vetting techniques to confirm the detections as real gigantic jets. The vetting techniques use a combination of low frequency (LF) and extremely low frequency (ELF) sferic data, in combination with stereo GLM measurements that provide optical source altitude. In addition, we will soon be able to calculate optical stereo sources with GLM on GOES-16 and the newly launched Lightning Imager on EUMETSAT, significantly expanding the stereo region of detection. When our detection methodology grows in maturity, we will deploy it to all past GLM data (2018-present) and share the database publicly, allowing other researchers to use this data for their own research.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
