The dynamic response of the legged robot locomotion is non-Lipschitz and can be stochastic due to environmental uncertainties. To test, validate, and characterize the safety performance of legged robots, existing solutions on observed and inferred risk can be incomplete and sampling inefficient. Some formal verification methods suffer from the model precision and other surrogate assumptions. In this paper, we propose a scenario sampling based testing framework that characterizes the overall safety performance of a legged robot by specifying (i) where (in terms of a set of states) the robot is potentially safe, and (ii) how safe the robot is within the specified set. The framework can also help certify the commercial deployment of the legged robot in real-world environment along with human and compare safety performance among legged robots with different mechanical structures and dynamic properties. The proposed framework is further deployed to evaluate a group of state-of-the-art legged robot locomotion controllers from various model-based, deep neural network involved, and reinforcement learning based methods in the literature. Among a series of intended work domains of the studied legged robots (e.g. tracking speed on sloped surface, with abrupt changes on demanded velocity, and against adversarial push-over disturbances), we show that the method can adequately capture the overall safety characterization and the subtle performance insights. Many of the observed safety outcomes, to the best of our knowledge, have never been reported by the existing work in the legged robot literature.
more »
« less
Towards Standardized Disturbance Rejection Testing of Legged Robot Locomotion with Linear Impactor: A Preliminary Study, Observations, and Implications
Dynamic locomotion in legged robots is close to industrial collaboration, but a lack of standardized testing obstructs commercialization. The issues are not merely political, theoretical, or algorithmic but also physical, indicating limited studies and comprehension regarding standard testing infrastructure and equipment. For decades, the approaches we have been testing legged robots were rarely standardizable with hand-pushing, foot-kicking, rope-dragging, stick-poking, and ball-swinging. This paper aims to bridge the gap by proposing the use of the linear impactor, a well-established tool in other standardized testing disciplines, to serve as an adaptive, repeatable, and fair disturbance rejection testing equipment for legged robots. A pneumatic linear impactor is also adopted for the case study involving the humanoid robot Digit. Three locomotion controllers are examined, including a commercial one, using a walking-in-place task against frontal impacts. The statistically best controller was able to withstand the impact momentum (26.376 kg • m/s) on par with a reported average effective momentum from straight punches by Olympic boxers (26.506kg•m/s). Moreover, the case study highlights other anti-intuitive observations, demonstrations, and implications that, to the best of the authors’ knowledge, are first-of-its-kind revealed in real-world testing of legged robots.
more »
« less
- Award ID(s):
- 2144156
- PAR ID:
- 10579188
- Publisher / Repository:
- IEEE
- Date Published:
- ISBN:
- 979-8-3503-8457-4
- Page Range / eLocation ID:
- 9946 to 9952
- Format(s):
- Medium: X
- Location:
- Yokohama, Japan
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
It is common for scientists to look to nature for inspiration in developing robots. Many times biological creatures outperform even the best man made robots. We will be focusing on aquatic locomotion of robots inspired by the locomotion of fish. There are two different means of propulsion of the robots tested in this paper. One model of the robot is propelled only through the oscillations of an internal momentum wheel, while the other is propelled by the direct actuation of a tail structure. Both of these models achieve net propulsion through vortex shedding past their trailing edge, and two of the robots locomotion is also aided by the change in shape from either a passive or active tail. Tests were conducted to highlight the locomotion performance differences of the two different means of locomotion.more » « less
-
Many applications require the deployment of legged-robot teams to effectively and efficiently carry out missions. The use of multiple robots allows tasks to be executed concurrently, expediting mission completion. It also enhances resilience by enabling task transfer in case of a robot failure. This paper presents a formulation based on Mixed Integer Linear Programming (MILP) for allocating tasks to robots by taking into account travel time and ensuring efficient execution of collaborative tasks. We extended the MILP formulation to account for complexities with legged robot teams. Our results demonstrate that this approach leads to improved performance in terms of the makespan of the mission. We demonstrate the usefulness of this approach using a case study involving the disinfection of a building consisting of multiple rooms.more » « less
-
Abstract This paper presents a hierarchical nonlinear control algorithm for the real-time planning and control of cooperative locomotion of legged robots that collaboratively carry objects. An innovative network of reduced-order models subject to holonomic constraints, referred to as interconnected linear inverted pendulum (LIP) dynamics, is presented to study cooperative locomotion. The higher level of the proposed algorithm employs a supervisory controller, based on event-based model predictive control (MPC), to effectively compute the optimal reduced-order trajectories for the interconnected LIP dynamics. The lower level of the proposed algorithm employs distributed nonlinear controllers to reduce the gap between reduced- and full-order complex models of cooperative locomotion. In particular, the distributed controllers are developed based on quadratic programing (QP) and virtual constraints to impose the full-order dynamical models of each agent to asymptotically track the reduced-order trajectories while having feasible contact forces at the leg ends. The paper numerically investigates the effectiveness of the proposed control algorithm via full-order simulations of a team of collaborative quadrupedal robots, each with a total of 22 degrees-of-freedom. The paper finally investigates the robustness of the proposed control algorithm against uncertainties in the payload mass and changes in the ground height profile. Numerical studies show that the cooperative agents can transport unknown payloads whose masses are up to 57%, 97%, and 137% of a single agent's mass with a team of two, three, and four legged robots.more » « less
-
Abstract Understanding legged locomotion in various environments is valuable for many fields, including robotics, biomechanics, rehabilitation, and motor control. Specifically, investigating legged locomotion in compliant terrains has recently been gaining interest for the robust control of legged robots over natural environments. At the same time, the importance of ground compliance has also been highlighted in poststroke gait rehabilitation. Currently, there are not many ways to investigate walking surfaces of varying stiffness. This article introduces the variable stiffness treadmill (VST) 2, an improvement of the first version of the VST, which was the first treadmill able to vary belt stiffness. In contrast to the VST 1, the device presented in this paper (VST 2) can reduce the stiffness of both belts independently, by generating vertical deflection instead of angular, while increasing the walking surface area from 0.20m2 to 0.74m2. In addition, both treadmill belts are now driven independently, while high-spatial-resolution force sensors under each belt allow for measurement of ground reaction forces and center of pressure. Through validation experiments, the VST 2 displays high accuracy and precision. The VST 2 has a stiffness range of 13kN/m to 1.5MN/m, error of less than 1%, and standard deviations of less than 2.2kN/m, demonstrating its ability to simulate low-stiffness environments reliably. The VST 2 constitutes a drastic improvement of the VST platform, a one-of-its-kind system that can improve our understanding of human and robotic gait while creating new avenues of research on biped locomotion, athletic training, and rehabilitation of gait after injury or disease.more » « less