The objective of this paper is to integrate the post-disaster network access to critical facilities into the network robustness assessment, considering the geographical exposure of infrastructure to natural hazards. Conventional percolation modelling that uses generating function to measure network robustness fails to characterize spatial networks due to the degree correlation. In addition, the giant component alone is not sufficient to represent the performance of transportation networks in the post-disaster setting, especially in terms of the access to critical facilities (i.e. emergency services). Furthermore, the failure probability of various links in the face of different hazards needs to be encapsulated in simulation. To bridge this gap, this paper proposed the metric robust component and a probabilistic link-removal strategy to assess network robustness through a percolation-based simulation framework. A case study has been conducted on the Portland Metro road network during an M9.0 earthquake scenario. The results revealed how the number of critical facilities severely impacts network robustness. Besides, earthquake-induced failures led to a two-phase percolation transition in robustness performance. The proposed robust component metric and simulation scheme can be generalized into a wide range of scenarios, thus enabling engineers to pinpoint the impact of disastrous disruption on network robustness. This research can also be generalized to identify critical facilities and sites for future development.
more »
« less
An Integrative Framework to Measure the Impacts of Earthquake-Induced Landslides on Transportation Network Mobility and Accessibility
This paper presents an integrative analysis framework combining natural hazards with network mobility to provide insights on disaster preparedness and relief. In particular, this framework characterizes the impact of seismically induced landslides on network mobility to reveal the mobility changes immediately after the events and throughout the course of restoration and recovery efforts. Landslides not only undermine the structural integrity of roadways, but also deposit a significant amount of material on the road surface, usually resulting in partial or complete road closure to traffic. The highly populated Portland, Oregon, Metro is selected as a case study to demonstrate this framework given that the Pacific Northwest is highly prone to large earthquakes as part of the Cascadia Subduction Zone as well as highly susceptible to landslides given its high topographic relief and wet climate. In this case study, travel time to the west and east sides of Willamette River, which divides the Portland Metro area, shows an abrupt change in mobility. In particular, the Portland Hills region with its steep topography is identified as the most vulnerable region. Based on a temporal analysis of recovery, the majority of the network mobility is expected to be restored after 30 days. The results of this study serve as a preliminary assessment of the impact of landslides on network mobility and can facilitate decision making in emergency planning.
more »
« less
- Award ID(s):
- 2103713
- PAR ID:
- 10579271
- Publisher / Repository:
- American Society of Civil Engineers
- Date Published:
- ISBN:
- 9780784484432
- Page Range / eLocation ID:
- 133 to 142
- Format(s):
- Medium: X
- Location:
- Virtual Conference
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The problem of traffic prediction is paramount in a plethora of applications, ranging from individual trip planning to urban planning. Existing work mainly focuses on traffic prediction on road networks. Yet, public transportation contributes a significant portion to overall human mobility and passenger volume. For example, the Washington, DC metro has on average 600,000 passengers on a weekday. In this work, we address the problem of modeling, classifying and predicting such passenger volume in public transportation systems. We study the case of the Washington, DC metro exploring fare card data, and specifically passenger in- and outflow at stations. To reduce dimensionality of the data, we apply principal component analysis to extract latent features for different stations and for different calendar days. Our unsupervised clustering results demonstrate that these latent features are highly discriminative. They allow us to derive different station types (residential, commercial, and mixed) and to effectively classify and identify the passenger flow of “unknown” stations. Finally, we also show that this classification can be applied to predict the passenger volume at stations. By learning latent features of stations for some time, we are able to predict the flow for the following hours. Extensive experimentation using a baseline neural network and two naïve periodicity approaches shows the considerable accuracy improvement when using the latent feature based approach.more » « less
-
Natural disasters such as wildfires, landslides, and earthquakes result in obstructions on roads due to fallen trees, landslides, and rocks. Such obstructions can cause significant mobility problems for both evacuees and first responders, especially in the immediate aftermath of disasters. Unmanned Aerial Vehicles (UAVs) provide an opportunity to perform rapid and remote reconnaissance of planned routes and thus provide decision-makers with information relating to a route’s feasibility. However, detecting obstacles on roads manually is a laborious and error-prone task, especially when attention is diverted to needs that are more urgent during disaster scenarios. This paper thus proposes a computer vision and machine-learning framework to detect obstacles on a road automatically to ensure its possibility in the aftermath of disasters. The framework implements the YOLO algorithm to detect and segment roads on images from UAVs and reference images from publicly available datasets. The images retrieved from UAVs and reference images are segmented and counted pixels of the roadway for comparison of the difference in pixels to identify the obstruction on the road. In addition, the method is proposed to automatically detect obstructions found in the region of interest (ROI) only on a roadway with images and videos from UAVs. Preliminary results from test runs are presented along with the future steps for implementing a real-time UAV-based road obstruction system.more » « less
-
Next-generation optical metro-access networks are expected to support end-to-end virtual network slices for critical 5G services. However, disasters affecting physical infrastructures upon which network slices are mapped can cause significant disruption in these services. Operators can deploy recovery units or trucks to restore services based on slice requirements. In this study, we investigate the problem of slice-aware service restoration in metro-access networks with specialized recovery trucks to restore services after a disaster failure. We model the problem based on classical vehicle-routing problem to find optimal routes for recovery trucks to failure sites to provide temporary backup service until the network components are repaired. Our proposed slice-aware service-restoration approach is formulated as a mixed integer linear program with the objective to minimize penalty of service disruption across different network slices.We compare our slice-aware approach with a slice-unaware approach and show that our proposed approach can achieve significant reduction in service-disruption penaltymore » « less
-
The rise in deep learning models in recent years has led to various innovative solutions for intelligent transportation technologies. Use of personal and on-demand mobility services puts a strain on the existing road network in a city. To mitigate this problem, city planners need a simulation framework to evaluate the effect of any incentive policy in nudging commuters towards alternate modes of travel, such as bike and car-share options. In this paper, we leverage MATSim, an agent-based simulation framework, to integrate agent preference models that capture the altruistic behavior of an agent in addition to their disutility proportional to the travel time and cost. These models are learned in a data-driven approach and can be used to evaluate the sensitivity of an agent to system-level disutility and monetary incentives given, e.g., by the transportation authority. This framework provides a standardized environment to evaluate the effectiveness of any particular incentive policy of a city, in nudging its residents towards alternate modes of transportation. We show the effectiveness of the approach and provide analysis using a case study from the Metropolitan Nashville area.more » « less
An official website of the United States government

