skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An Improved Bio‐Physical Parameterization for Ocean Radiant Heating in Conditions of Near‐Surface Stratification
Abstract Solar heating of the upper ocean is a primary energy input to the ocean‐atmosphere system, and the vertical heating profile is modified by the concentration of phytoplankton in the water, with consequences for sea surface temperature and upper ocean dynamics. Despite the development of increasingly complex modeling approaches for radiative transfer in the atmosphere and upper ocean, the simple parameterizations of radiant heating used in most ocean models can be significantly improved in cases of near‐surface stratification. There remains a need for a parameterization that is accurate in the upper meters and contains an explicitly spectral dependence on the concentration of biogenic material, while maintaining the computational simplicity of the parameterizations currently in use. Here, we assemble observationally‐validated physical modeling tools for the key controls on ocean radiant heating, and simplify them into a parameterization that fulfills this need. We then use observations from 64 spectroradiometer depth casts across 6 cruises in diverse water bodies, 13 surface hyperspectral radiometer deployments, and broadband albedo from 2 UAV flights to probe the accuracy and uncertainty associated with the new parameterization. A novel case study using the parameterization demonstrates the impact of chlorophyll concentration on the structure of diurnal warm layers. The parameterization presented in this work will allow for better modeling of global patterns of sea surface temperature, diurnal warming, and freshwater lenses, without a prohibitive increase in complexity.  more » « less
Award ID(s):
2049546
PAR ID:
10579659
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Oceans
Volume:
129
Issue:
11
ISSN:
2169-9275
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Modeling the shortwave radiation balance over the Southern Ocean region remains a challenge for Earth system models. To investigate whether this is related to the representation of aerosol‐cloud interactions, we compared measurements of the total number concentration of sea spray‐generated particles within the Southern Ocean region to model predictions thereof. Measurements were conducted from a container laboratory aboard the R/VTangaroathroughout an austral summer voyage to the Ross Sea. We used source‐receptor modeling to calculate the sensitivity of our measurements to upwind surface fluxes. From this approach, we could constrain empirical parameterizations of sea spray surface flux based on surface wind speed and sea surface temperature. A newly tuned parameterization for the flux of sea spray particles based on the near‐surface wind speed is presented. Comparisons to existing model parameterizations revealed that present model parameterizations led to overestimations of sea spray concentrations. In contrast to previous studies, we found that including sea surface temperature as an explanatory variable did not substantially improve model‐measurement agreement. To test whether or not the parameterization may be applicable globally, we conducted a regression analysis using a database of in situ whitecap measurements. We found that the key fitting parameter within this regression agreed well with the parameterization of sea spray flux. Finally, we compared calculations from the best model of surface flux to boundary layer measurements collected onboard an aircraft throughout the Southern Ocean Clouds, Radiation, Aerosol Transport Experimental Study (SOCRATES), finding good agreement overall. 
    more » « less
  2. Abstract In conditions of low winds and high insolation, near-surface stratification develops in the ocean that is typically referred to as a diurnal warm layer (DWL). These layers can have a substantial effect on sea surface temperature and air–sea fluxes yet are rarely accounted for in modern global models due to their small vertical scale. Here, we present collocated measurements of vertical temperature and turbulence structures in large DWLs made from a Lagrangian float featuring a robotic lead screw temperature/salinity (T/S) profiler and pulse-to-pulse coherent ADCP as well as a comprehensive suite of meteorological observations above the ocean surface, yielding novel observations of the response of large DWLs to variability in wind and solar forcing at subhourly time scales. Comparison between the observations and a hierarchy of upper-ocean models reveals the importance of an accurate solar heating parameterization and suggests a modification to the critical bulk Richardson number used by default in theK-profile parameterization. Comparison to a simple scaling for DWL evolution highlights its potential as a means of incorporating DWL effects into global-scale modeling, and a new extension to the scaling is developed to remedy its inaccuracy in cases of wind decrease. None of the models tested are able to reproduce the observed response to sudden insolation loss on one of the stations. Significance StatementThis study presents measurements of warm layers of water that can develop on the ocean surface on a calm, sunny day. These layers are widespread in the ocean and change the relationship between the ocean and the atmosphere, but they are hard to include in large models because they are so shallow. By comparing first-of-their-kind observations of these warm layers made by our drifting buoy with several types of physical models, we improve our understanding of them and chart a realistic path toward their inclusion in global models. 
    more » « less
  3. The ship-based experiment MOSAiC 2019/2020 was carried out during a full year in the Arctic and yielded an excellent data set to test the parameterizations of ocean/sea-ice/atmosphere interaction processes in regional climate models (RCMs). In the present paper, near-surface data during MOSAiC are used for the verification of the RCM COnsortium for Small-scale MOdel–Climate Limited area Mode (COSMO-CLM or CCLM). CCLM is used in a forecast mode (nested in ERA5) for the whole Arctic with 15 km resolution and is run with different configurations of sea ice data. These include the standard sea ice concentration taken from passive microwave data with around 6 km resolution, sea ice concentration from Moderate Resolution Imaging Spectroradiometer (MODIS) thermal infrared data and MODIS sea ice lead fraction data for the winter period. CCLM simulations show a good agreement with the measurements. Relatively large negative biases for temperature occur for November and December, which are likely associated with a too large ice thickness used by CCLM. The consideration of sea ice leads in the sub-grid parameterization in CCLM yields improved results for the near-surface temperature. ERA5 data show a large warm bias of about 2.5°C and an underestimation of the temperature variability. 
    more » « less
  4. Subseasonal to seasonal forecasts are likely to improve from better sea surface temperature (SST) predictions, as SST is the bottom boundary condition for the marine atmosphere. We present research that extends the analysis and prediction of SST to include variability of upper ocean mixing to explore how the variability of the ocean mixed layer affects the intraseasonal statistics of SST and its covariance with tropical intraseasonal atmospheric variability. We present a conceptual framework to identify the contribution of fast (hourly to daily) co-variations in ocean mixed layer depth and atmospheric fluxes to seasonal to sub-seasonal sea surface temperature prediction. First, metrics from this framework will be analyzed from data collected throughout the tropical and subtropical oceans from moored platforms and profiling instruments to demonstrate how diurnal solar warming, fast wind gusts and rain showers, and daily variable clouds and winds rectify into longer timescale intraseasonal SST variability. We will then focus the pre-monsoon season in the Arabian Sea using observations of the upper ocean collected during the 2023 ASTRraL/EKAMSAT field program, highlighting the role of the diurnal warm layer variability on mean SST. 
    more » « less
  5. Abstract Given the increasing attention in forecasting weather and climate on the subseasonal time scale in recent years, National Oceanic and Atmospheric Administration (NOAA) announced to support Climate Process Teams (CPTs) which aim to improve the Madden‐Julian Oscillation (MJO) prediction by NOAA’s global forecasting models. Our team supported by this CPT program focuses primarily on the improvement of upper ocean mixing parameterization and air‐sea fluxes in the NOAA Climate Forecast System (CFS). Major improvement includes the increase of the vertical resolution in the upper ocean and the implementation of General Ocean Turbulence Model (GOTM) in CFS. In addition to existing mixing schemes in GOTM, a newly developed scheme based on observations in the tropical ocean, with further modifications, has been included. A better performance of ocean component is demonstrated through one‐dimensional ocean model and ocean general circulation model simulations validated by the comparison with in‐situ observations. These include a large sea surface temperature (SST) diurnal cycle during the MJO suppressed phase, intraseasonal SST variations associated with the MJO, ocean response to atmospheric cold pools, and deep cycle turbulence. Impact of the high‐vertical resolution of ocean component on CFS simulation of MJO‐associated ocean temperature variations is evident. Also, the magnitude of SST changes caused by high‐resolution ocean component is sufficient to influence the skill of MJO prediction by CFS. 
    more » « less