skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Influence of Surface Fluxes on Export of Southern Ocean Intermediate and Mode Water in Coupled Climate Models
Abstract The Southern Ocean (SO) plays a crucial role in the process of sequestering heat and carbon dioxide from the atmosphere and transferring them to the deep ocean. This process is intricately linked to the formation of Antarctic Intermediate Water (AAIW) and Subantarctic Mode Water (SAMW), which are pivotal components of the Meridional Overturning Circulation (MOC) and have a substantial impact on the global climate balance. AAIW and SAMW take shape in specific regions of the Southern Ocean due to the influence of strong winds, buoyancy fluxes, and their effects, such as convection, the development of thick mixed layers, and wind‐driven subduction. These water masses subsequently flow northward, contributing to the ventilation of the intermediate layers within the subtropical gyres. In this study, our focus lies on investigating the regional aspects of AAIW and SAMW transformation in CMIP6 models. We accomplish this by analyzing the relationship between the meridional transport of these water masses and air‐sea fluxes, particularly Ekman pumping, freshwater fluxes, and heat fluxes. Our findings reveal that the highest transformation rates occur in the Indian sector of the Southern Ocean, with notable values also observed in the southeast Pacific and south of Africa. Additionally, we assess the potential changes in these formation regions under future scenarios projected for the end of the 21st century. Although the patterns of formation regions remain consistent, there is a significant decrease in the transformation process.  more » « less
Award ID(s):
2149501 1936222 2332379
PAR ID:
10579673
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Oceans
Volume:
129
Issue:
11
ISSN:
2169-9275
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Subduction in the Antarctic circumpolar region of the Southern Ocean (SO) results in the formation of Antarctic Intermediate Water (AAIW) and Subantarctic Mode Water (SAMW). Theoretical understanding predicts that subduction rates of these waters masses is driven by wind stress curl and buoyancy fluxes. The objective of this work is to evaluate the extent to which AAIW and SAMW variability are correlated to SO air‐sea fluxes and how potential changes to those forcings would impact the future water mass export rates. We correlate the water mass volume transport at 30°S with Ekman pumping, freshwater and heat fluxes in the Coupled Model Intercomparison Project. The export of these water masses varies across models, with most overestimating the total transport. Correlation coefficients between the air‐sea fluxes and exports are consistent with theoretical expectations. In the picontrol/historical scenarios, the highest correlations with AAIW export variability are heat flux, while Ekman pumping best explains SAMW. However, multivariate regressions show that both AAIW and SAMW export variability are better explained using the combination of all three fluxes. In future scenario simulations air‐sea fluxes trend significantly in the catastrophic scenario (RCP8.5 and SSP8.5). Both AAIW and SAMW are still highly correlated to the fluxes, but with different correlation coefficients. The dominant forcing components even change from the present simulations to the future scenario runs. Thus, correlations between AAIW and SAMW transports and air‐sea fluxes are not stationary in time, limiting the predictive skill of statistical models and highlighting the importance of using complex climate models. 
    more » « less
  2. Wintertime surface ocean heat loss is the key process driving the formation of Subantarctic Mode Water (SAMW), but there are few direct observations of heat fluxes, particularly during winter. The Ocean Observatories Initiative (OOI) Southern Ocean mooring in the southeast Pacific Ocean and the Southern Ocean Flux Station (SOFS) in the southeast Indian Ocean provide the first concurrent, multiyear time series of air–sea fluxes in the Southern Ocean from two key SAMW formation regions. In this work we compare drivers of wintertime heat loss and SAMW formation by comparing air–sea fluxes and mixed layers at these two mooring locations. A gridded Argo product and the ERA5 reanalysis product provide temporal and spatial context for the mooring observations. Turbulent ocean heat loss is on average 1.5 times larger in the southeast Indian (SOFS) than in the southeast Pacific (OOI), with stronger extreme heat flux events in the southeast Indian leading to larger cumulative winter ocean heat loss. Turbulent heat loss events in the southeast Indian (SOFS) occur in two atmospheric regimes (cold air from the south or dry air circulating via the north), while heat loss events in the southeast Pacific (OOI) occur in a single atmospheric regime (cold air from the south). On interannual time scales, wintertime anomalies in net heat flux and mixed layer depth (MLD) are often correlated at the two sites, particularly when wintertime MLDs are anomalously deep. This relationship is part of a larger basin-scale zonal dipole in heat flux and MLD anomalies present in both the Indian and Pacific basins, associated with anomalous meridional atmospheric circulation. 
    more » « less
  3. Abstract The South Atlantic Ocean is an important region for anthropogenic CO2(Canth) uptake and storage in the world ocean, yet is less studied. Here, after an extensive sensitivity test and method comparison, we applied an extended multiple linear regression method with six characteristic water masses to estimate Canthchange or increase (ΔCanth) between 1980s and 2010s in the South Atlantic Ocean using two meridional transects (A16S and A13.5) and one zonal transect (A10). Over a period of about 25 years, the basin‐wide ΔCanthwas 3.86 ± 0.14 Pg C decade−1. The two basins flanking the Mid‐Atlantic Ridge had different meridional patterns of ΔCanth, yielding an average depth‐integrated ΔCanthin the top 2000 m of 0.91 ± 0.25 mol m−2 yr−1along A16S on the west and 0.57 ± 0.22 mol m−2 yr−1along A13.5 on the east. The west‐east basin ΔCanthcontrasts were most prominent in the tropical region (0–20°S) in the Surface Water (SW), approximately from equator to 35°S in the Subantarctic Mode Water (Subantarctic Mode Water (SAMW)), and all latitudes in the Antarctic Intermediate Water (AAIW). Less ΔCanthin the eastern basin than the western basin was caused by weaker ventilation driven by SAMW and AAIW formation and subduction and stronger Antarctic Bottom Water (AABW) formation in the former than the latter. In addition to the spatial heterogeneity, Canthincrease rates accelerated from the 1990s to the 2000s, consistent with the overall increase in air‐sea CO2exchange in the South Atlantic Ocean. 
    more » « less
  4. The South Atlantic Ocean is an important region for anthropogenic CO2 (Canth) uptake and storage in the world ocean, yet is less studied. Here, after an extensive sensitivity test and method comparison, we applied an extended multiple linear regression (eMLR) method with six characteristic water masses to estimate Canth change or increase (ΔCanth) between 1980s and 2010s in the South Atlantic Ocean using two meridional transects (A16S and A13.5) and one zonal transect (A10). Over a period of about 25 years, the basin-wide ΔCanth was 3.86±0.14 Pg C decade-1. The two basins flanking the Mid-Atlantic Ridge had different meridional patterns of ΔCanth, yielding an average depth‐integrated ΔCanth in the top 2000 m of 0.91±0.25 mol m-2 yr-1 along A16S on the west and 0.57±0.22 mol m-2 yr-1 along A13.5 on the east. The west-east basin ΔCanth contrasts were most prominent in the tropical region (0-20°S) in the Surface Water (SW), approximately from equator to 35°S in the Subantarctic Mode Water (SAMW), and all latitudes in the Antarctic Intermediate Water (AAIW). Less Canth in the eastern basin than the western basin was caused by weaker ventilation driven by SAMW and AAIW formation and subduction and stronger Antarctic Bottom Water (AABW) formation in the former than the latter. In addition to the spatial heterogeneity, Canth increase rates accelerated from the 1990s to the 2000s, consistent with the overall increase in air-sea CO2 exchange in the South Atlantic Ocean. 
    more » « less
  5. null (Ed.)
    Abstract The deepest wintertime (Jul-Sep) mixed layers associated with Subantarctic Mode Water (SAMW) formation develop in the Indian and Pacific sectors of the Southern Ocean. In these two sectors the dominant interannual variability of both deep wintertime mixed layers and SAMW volume is a east-west dipole pattern in each basin. The variability of these dipoles are strongly correlated with the interannual variability of overlying winter quasi-stationary mean sea level pressure (MSLP) anomalies. Anomalously strong positive MSLP anomalies are found to result in the deepening of the wintertime mixed layers and an increase in the SAMW formation in the eastern parts of the dipoles in the Pacific and Indian sectors. These effects are due to enhanced cold southerly meridional winds, strengthened zonal winds and increased surface ocean heat loss. The opposite occurs in the western parts of the dipoles in these sectors. Conversely, strong negative MSLP anomalies result in shoaling (deepening) of the wintertime mixed layers and a decrease (increase) in SAMW formation in the eastern (western) regions. The MSLP variability of the Pacific and Indian basin anomalies are not always in phase, especially in years with a strong El Niño, resulting in different patterns of SAMW formation in the western vs. eastern parts of the Indian and Pacific sectors. Strong isopycnal depth and thickness anomalies develop in the SAMW density range in years with strong MSLP anomalies. When advected eastward, they act to precondition downstream SAMW formation in the subsequent winter. 
    more » « less