We analyze finite element discretizations of scalar curvature in dimension $$N \ge 2$$. Our analysis focuses on piecewise polynomial interpolants of a smooth Riemannian metric $$g$$ on a simplicial triangulation of a polyhedral domain $$\Omega \subset \mathbb{R}^N$$ having maximum element diameter $$h$$. We show that if such an interpolant $$g_h$$ has polynomial degree $$r \ge 0$$ and possesses single-valued tangential-tangential components on codimension-1 simplices, then it admits a natural notion of (densitized) scalar curvature that converges in the $$H^{-2}(\Omega)$$-norm to the (densitized) scalar curvature of $$g$$ at a rate of $$O(h^{r+1})$$ as $$h \to 0$$, provided that either $N = 2$ or $$r \ge 1$$. As a special case, our result implies the convergence in $$H^{-2}(\Omega)$$ of the widely used ``angle defect'' approximation of Gaussian curvature on two-dimensional triangulations, without stringent assumptions on the interpolated metric $$g_h$$. We present numerical experiments that indicate that our analytical estimates are sharp.
more »
« less
Finite element approximation of the Einstein tensor
Abstract We construct and analyse finite element approximations of the Einstein tensor in dimension $$N \ge 3$$. We focus on the setting where a smooth Riemannian metric tensor $$g$$ on a polyhedral domain $$\varOmega \subset \mathbb{R}^{N}$$ has been approximated by a piecewise polynomial metric $$g_{h}$$ on a simplicial triangulation $$\mathcal{T}$$ of $$\varOmega $$ having maximum element diameter $$h$$. We assume that $$g_{h}$$ possesses single-valued tangential–tangential components on every codimension-$$1$$ simplex in $$\mathcal{T}$$. Such a metric is not classically differentiable in general, but it turns out that one can still attribute meaning to its Einstein curvature in a distributional sense. We study the convergence of the distributional Einstein curvature of $$g_{h}$$ to the Einstein curvature of $$g$$ under refinement of the triangulation. We show that in the $$H^{-2}(\varOmega )$$-norm this convergence takes place at a rate of $$O(h^{r+1})$$ when $$g_{h}$$ is an optimal-order interpolant of $$g$$ that is piecewise polynomial of degree $$r \ge 1$$. We provide numerical evidence to support this claim. In the process of proving our convergence results we derive a few formulas for the evolution of certain geometric quantities under deformations of the metric.
more »
« less
- PAR ID:
- 10579675
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- IMA Journal of Numerical Analysis
- ISSN:
- 0272-4979
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We present a finite element technique for approximating the surface Hessian of a discrete scalar function on triangulated surfaces embedded in $$\R^{3}$$, with or without boundary. We then extend the method to compute approximations of the full shape operator of the underlying surface using only the known discrete surface. The method is based on the Hellan--Herrmann--Johnson (HHJ) element and does not require any ad-hoc modifications. Convergence is established provided the discrete surface satisfies a Lagrange interpolation property related to the exact surface. The convergence rate, in $L^2$, for the shape operator approximation is $O(h^m)$, where $$m \geq 1$$ is the polynomial degree of the surface, i.e. the method converges even for piecewise linear surface triangulations. For surfaces with boundary, some additional boundary data is needed to establish optimal convergence, e.g. boundary information about the surface normal vector or the curvature in the co-normal direction. Numerical examples are given on non-trivial surfaces that demonstrate our error estimates and the efficacy of the method.more » « less
-
Abstract We address a problem that extends a fundamental classical result of continuum mechanics from the time of its inception, as well as answers a fundamental question in the recent, modern nonlinear elastic theory of dislocations. Interestingly, the implication of our result in the latter case is qualitatively different from its well-established analog in the linear elastic theory of dislocations. It is a classical result that if $$u\in C^2({\mathbb {R}}^n;{\mathbb {R}}^n)$$ u ∈ C 2 ( R n ; R n ) and $$\nabla u \in SO(n)$$ ∇ u ∈ S O ( n ) , it follows that u is rigid. In this article this result is generalized to matrix fields with non-vanishing $${\text {curl }}$$ curl . It is shown that every matrix field $$R\in C^2(\varOmega ;SO(3))$$ R ∈ C 2 ( Ω ; S O ( 3 ) ) such that $${\text {curl }}R = constant$$ curl R = c o n s t a n t is necessarily constant. Moreover, it is proved in arbitrary dimensions that a measurable rotation field is as regular as its distributional $${\text {curl }}$$ curl allows. In particular, a measurable matrix field $$R: \varOmega \rightarrow SO(n)$$ R : Ω → S O ( n ) , whose $${\text {curl }}$$ curl in the sense of distributions is smooth, is also smooth.more » « less
-
A unified construction of H(div)-conforming finite element tensors, including vector element, symmetric matrix element, traceless matrix element, and, in general, tensors with linear constraints, is developed in this work. It is based on the geometric decomposition of Lagrange elements into bubble functions on each sub-simplex. Each tensor at a sub-simplex is further decomposed into tangential and normal components. The tangential component forms the bubble function space, while the normal component characterizes the trace. Some degrees of freedom can be redistributed to (n-1)-dimensional faces. The developed finite element spaces are H(div)-conforming and satisfy the discrete inf-sup condition. Intrinsic bases of the constraint tensor space are also established.more » « less
-
Abstract We study the fractional Yamabe problem first considered by Gonzalez-Qing [36] on the conformal infinity $$(M^{n}, \;[h])$$ of a Poincaré-Einstein manifold $$(X^{n+1}, \;g^{+})$$ with either $n=2$ or $$n\geq 3$$ and $$(M^{n}, \;[h])$$ locally flat, namely $(M, h),$ is locally conformally flat. However, as for the classical Yamabe problem, because of the involved quantization phenomena, the variational analysis of the fractional one exhibits a local situation and also a global one. The latter global situation includes the case of conformal infinities of Poincaré-Einstein manifolds of dimension either $n=2$ or of dimension $$n\geq 3$$ and which are locally flat, and hence the minimizing technique of Aubin [4] and Schoen [48] in that case clearly requires an analogue of the positive mass theorem of Schoen-Yau [49], which is not known to hold. Using the algebraic topological argument of Bahri-Coron [8], we bypass the latter positive mass issue and show that any conformal infinity of a Poincaré-Einstein manifold of dimension either $n=2$ or of dimension $$n\geq 3$$ and which is locally flat admits a Riemannian metric of constant fractional scalar curvature.more » « less
An official website of the United States government
