One of the cornerstones in censorship circumvention is fully encrypted protocols, which encrypt every byte of the payload in an attempt to “look like nothing”. In early November 2021, the Great Firewall of China (GFW) deployed a new censorship technique that passively detects—and subsequently blocks— fully encrypted traffic in real time. The GFW’s new censorship capability affects a large set of popular censorship circum- vention protocols, including but not limited to Shadowsocks, VMess, and Obfs4. Although China had long actively probed such protocols, this was the first report of purely passive de- tection, leading the anti-censorship community to ask how detection was possible. In this paper, we measure and characterize the GFW’s new system for censoring fully encrypted traffic. We find that, in- stead of directly defining what fully encrypted traffic is, the censor applies crude but efficient heuristics to exempt traffic that is unlikely to be fully encrypted traffic; it then blocks the remaining non-exempted traffic. These heuristics are based on the fingerprints of common protocols, the fraction of set bits, and the number, fraction, and position of printable ASCII characters. Our Internet scans reveal what traffic and which IP addresses the GFW inspects. We simulate the inferred GFW’s detection algorithm on live traffic at a university network tap to evaluate its comprehensiveness and false positives. We show evidence that the rules we inferred have good coverage of what the GFW actually uses. We estimate that, if applied broadly, it could potentially block about 0.6% of normal In- ternet traffic as collateral damage. Our understanding of the GFW’s new censorship mecha- nism helps us derive several practical circumvention strategies. We responsibly disclosed our findings and suggestions to the developers of different anti-censorship tools, helping millions of users successfully evade this new form of blocking 
                        more » 
                        « less   
                    
                            
                            Detecting encrypted traffic activities and patterns in ZigBee network Data
                        
                    
    
            With the increase in data transmissions and network traffic over the years, there has been an increase in concerns about protecting network data and information from snooping. With this concern, encryptions are incorporated into network protocols. From wireless protocols to web and phone applications, systems that handle the going and coming of data on the network have applied different kinds of encryptions to protect the confidentiality and integrity of their data transfers. The addition of encryptions poses a new question. What will be observed from encrypted traffic data? This work in progress research delivers an in-depth overview of the ZigBee protocol and analyzes encrypted ZigBee traffic on the ZigBee network. From our analysis, we developed possible strategies for ZigBee traffic analysis. Adopting the proposed strategy makes it possible to detect encrypted traffic activities and patterns of use on the ZigBee network. To the best of our knowledge, this is the first work that tries to understand encrypted ZigBee traffic. By understanding what can be gained from encrypted traffic, this work will benefit the security and privacy of the ZigBee protocol. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2042700
- PAR ID:
- 10580320
- Publisher / Repository:
- IEEE
- Date Published:
- ISBN:
- 979-8-3503-0001-7
- Page Range / eLocation ID:
- 356 to 362
- Format(s):
- Medium: X
- Location:
- Laurel, MD, USA
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)Smart-home devices promise to make users’ lives more convenient. However, at the same time, such devices increase the possibility of breaching users’ privacy as they are tightly connected to the users’ daily lives and activities. To address privacy invasion through smart-home devices, we present ChatterHub. This novel approach accurately identifies smart-home devices’ activities with minimal monitoring of encrypted traffic in the home network. ChatterHub targets devices that can only connect to the Internet through a centralized smart-home hub (e.g., Samsung SmartThings) using Zigbee or Z-wave. Specifically, ChatterHub passively eavesdrops on encrypted network traffic from the hub and leverages machine learning techniques to classify events and states of smart-home devices. Using ChatterHub, an adversary can identify smart-home devices’ specific activities without prior knowledge of the target smart home (e.g., list of deployed devices, types of communication protocols). We evaluated the accuracy and efficiency of ChatterHub in three real-world smart-home environments, and the evaluation results show that an attacker can successfully disclose smart-home devices’ behaviors with over 88% F1 score. We further demonstrate that ChatterHub successfully recognizes privacy-sensitive activities, including open and close of a smart door lock and turn on and off of smart LED. Additionally, to mitigate the threats posed by ChatterHub, we introduce two approaches, packet padding and random sequence injection. These mitigation approaches can effectively prevent threats from ChatterHub with only 9.2MB of additional network traffic per day.more » « less
- 
            In many VoIP systems, Voice Activity Detection (VAD) is often used on VoIP traffic to suppress packets of silence in order to reduce the bandwidth consumption of phone calls. Unfortunately, although VoIP traffic is fully encrypted and secured, traffic analysis of this suppression can reveal identifying information about calls made to customer service automated phone systems. Because different customer service phone systems have distinct, but fixed (pre-recorded) automated voice messages sent to customers, VAD silence suppression used in VoIP will enable an eavesdropper to profile and identify these automated voice messages. In this paper, we will use a popular enterprise VoIP system (Cisco CallManager), running the default Session Initiation Protocol (SIP) protocol, to demonstrate that an attacker can reliably use the silence suppression to profile calls to such VoIP systems. Our real-world experiments demonstrate that this side-channel profiling attack can be used to accurately identify not only what customer service phone number a customer calls, but also what following options are subsequently chosen by the caller in the phone conversation.more » « less
- 
            Encryption is a fundamental security measure to safeguard data during transmission to ensure confidentiality while at the same time posing a great challenge for traditional packet and traffic inspection. In response to the proliferation of diverse network traffic patterns from Internet-of-Things devices, websites, and mobile applications, understanding and classifying encrypted traffic are crucial for network administrators, cybersecurity professionals, and policy enforcement entities. This paper presents a comprehensive survey of recent advancements in machine-learning-driven encrypted traffic analysis and classification. The primary goals of our survey are two-fold: First, we present the overall procedure and provide a detailed explanation of utilizing machine learning in analyzing and classifying encrypted network traffic. Second, we review state-of-the-art techniques and methodologies in traffic analysis. Our aim is to provide insights into current practices and future directions in encrypted traffic analysis and classification, especially machine-learning-based analysis.more » « less
- 
            Voice assistants are becoming increasingly pervasive due to the convenience and automation they provide through the voice interface. However, such convenience often comes with unforeseen security and privacy risks. For example, encrypted traffic from voice assistants can leak sensitive information about their users' habits and lifestyles. In this paper, we present a taxonomy of fingerprinting voice commands on the most popular voice assistant platforms (Google, Alexa, and Siri). We also provide a deeper understanding of the feasibility of fingerprinting third-party applications and streaming services over the voice interface. Our analysis not only improves the state-of-the-art technique but also studies a more realistic setup for fingerprinting voice activities over encrypted traffic.Our proposed technique considers a passive network eavesdropper observing encrypted traffic from various devices within a home and, therefore, first detects the invocation/activation of voice assistants followed by what specific voice command is issued. Using an end-to-end system design, we show that it is possible to detect when a voice assistant is activated with 99% accuracy and then utilize the subsequent traffic pattern to infer more fine-grained user activities with around 77-80% accuracy.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    