skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quantum isomorphism of graphs from association schemes
Using a key result of Mancinska and Roberson characterizing quantum isomorphism in terms of planar homomorphism counts and using the theory of scaffolds, the authors construct large families of graphs that are pairwise non-isomorphic yet quantum isomorphic. All examples so far arise from Hadamard matrices.  more » « less
Award ID(s):
1808376
PAR ID:
10580613
Author(s) / Creator(s):
;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Journal of Combinatorial Theory, Series B
Volume:
164
Issue:
C
ISSN:
0095-8956
Page Range / eLocation ID:
340 to 363
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Motivated by the theory of Cuntz-Krieger algebras we define and study C ∗ C^\ast -algebras associated to directed quantum graphs. For classical graphs the C ∗ C^\ast -algebras obtained this way can be viewed as free analogues of Cuntz-Krieger algebras, and need not be nuclear. We study two particular classes of quantum graphs in detail, namely the trivial and the complete quantum graphs. For the trivial quantum graph on a single matrix block, we show that the associated quantum Cuntz-Krieger algebra is neither unital, nuclear nor simple, and does not depend on the size of the matrix block up to K K KK -equivalence. In the case of the complete quantum graphs we use quantum symmetries to show that, in certain cases, the corresponding quantum Cuntz-Krieger algebras are isomorphic to Cuntz algebras. These isomorphisms, which seem far from obvious from the definitions, imply in particular that these C ∗ C^\ast -algebras are all pairwise non-isomorphic for complete quantum graphs of different dimensions, even on the level of K K KK -theory. We explain how the notion of unitary error basis from quantum information theory can help to elucidate the situation. We also discuss quantum symmetries of quantum Cuntz-Krieger algebras in general. 
    more » « less
  2. We show that for a closed embedding H ≤ G of locally compact quantum groups (LCQGs) with G/H admitting an invariant probability measure, a unitary G-representation is type-I if its restriction to H is. On a related note, we also prove that if an action G ⟳ A of an LCQG on a unital C∗ -algebra admits an invariant state then the full group algebra of G embeds into the resulting full crossed product (and into the multiplier algebra of that crossed product if the original algebra is not unital). We also prove a few other results on crossed products of LCQG actions, some of which seem to be folklore; among them are (a) the fact that two mutually dual quantum-group morphisms produce isomorphic full crossed products, and (b) the fact that full and reduced crossed products by dual-coamenable LCQGs are isomorphic. 
    more » « less
  3. Abstract We compare the algebras of the quantum automorphism group of finite-dimensional C$$^\ast $$-algebra $$B$$, which includes the quantum permutation group $$S_N^+$$, where $$N = \dim B$$. We show that matrix amplification and crossed products by trace-preserving actions by a finite Abelian group $$\Gamma $$ lead to isomorphic $$\ast $$-algebras. This allows us to transfer various properties such as inner unitarity, Connes embeddability, and strong $$1$$-boundedness between the various algebras associated with these quantum groups. 
    more » « less
  4. null (Ed.)
    We construct a stable homotopy refinement of quantum annular homology, a link homology theory introduced by Beliakova, Putyra and Wehrli. For each $$r\geq ~2$$ we associate to an annular link $$L$$ a naive $$\mathbb {Z}/r\mathbb {Z}$$ -equivariant spectrum whose cohomology is isomorphic to the quantum annular homology of $$L$$ as modules over $$\mathbb {Z}[\mathbb {Z}/r\mathbb {Z}]$$ . The construction relies on an equivariant version of the Burnside category approach of Lawson, Lipshitz and Sarkar. The quotient under the cyclic group action is shown to recover the stable homotopy refinement of annular Khovanov homology. We study spectrum level lifts of structural properties of quantum annular homology. 
    more » « less
  5. null (Ed.)
    Abstract We propose a heuristic algorithm to solve the underlying hard problem of the CSIDH cryptosystem (and other isogeny-based cryptosystems using elliptic curves with endomorphism ring isomorphic to an imaginary quadratic order 𝒪). Let Δ = Disc(𝒪) (in CSIDH, Δ = −4 p for p the security parameter). Let 0 < α < 1/2, our algorithm requires: A classical circuit of size 2 O ˜ log ( | Δ | ) 1 − α . $$2^{\tilde{O}\left(\log(|\Delta|)^{1-\alpha}\right)}.$$ A quantum circuit of size 2 O ˜ log ( | Δ | ) α . $$2^{\tilde{O}\left(\log(|\Delta|)^{\alpha}\right)}.$$ Polynomial classical and quantum memory. Essentially, we propose to reduce the size of the quantum circuit below the state-of-the-art complexity 2 O ˜ log ( | Δ | ) 1 / 2 $$2^{\tilde{O}\left(\log(|\Delta|)^{1/2}\right)}$$ at the cost of increasing the classical circuit-size required. The required classical circuit remains subexponential, which is a superpolynomial improvement over the classical state-of-the-art exponential solutions to these problems. Our method requires polynomial memory, both classical and quantum. 
    more » « less