Abstract We study the effects of pore fluid pressure (Pf) on the pre‐earthquake, near‐fault stress state, and 3‐D earthquake rupture dynamics through six scenarios utilizing a structural model based on the 2004Mw9.1 Sumatra‐Andaman earthquake. As pre‐earthquakePfmagnitude increases, effective normal stress and fault shear strength decrease. As a result, magnitude, slip, peak slip rate, stress drop, and rupture velocity of the scenario earthquakes decrease. Comparison of results with observations of the 2004 earthquake support that pre‐earthquakePfaverages near 97% of lithostatic pressure, leading to pre‐earthquake average shear and effective normal tractions of 4–5 and 22 MPa. The megathrust in these scenarios is weak, in terms of low mean shear traction at static failure and low dynamic friction coefficient during rupture. Apparent co‐seismic principal stress rotations and absolute post‐seismic stresses in these scenarios are consistent with the variety of observed aftershock focal mechanisms. In all scenarios, the mean apparent stress rotations are larger above than below the megathrust. Scenarios with largerPfmagnitudes exhibit lower mean apparent principal stress rotations. We further evaluate pre‐earthquakePfdepth distribution. IfPffollows a sublithostatic gradient, pre‐earthquake effective normal stress increases with depth. IfPffollows the lithostatic gradient exactly, then this normal stress is constant, shifting peak slip and peak slip rate updip. This renders constraints on near‐trench strength and constitutive behavior crucial for mitigating hazard. These scenarios provide opportunity for future calibration with site‐specific measurements to constrain dynamically plausible megathrust strength andPfgradients.
more »
« less
Thermobaric Activation of Fault Friction
Abstract The constitutive behavior of faults intervenes in virtually every aspect of the seismic phenomenon but is poorly understood, particularly regarding how effective normal stress affects the boundaries of the seismogenic zone. Here, we explore the mechanical properties of Pelona schist, Westerly granite, phyllosilicate‐rich gouge, gabbro, hornblende, lawsonite blueschist, montmorillonite, and smectite in hydrothermal conditions at various confining pressures and explain the laboratory observations with a physical model of fault friction. The thermobaric activation of healing and deformation mechanisms explains the boundaries of unstable slip as a function of slip‐rate, temperature, and effective normal stress for a given lithology. The constitutive law affords extrapolation of laboratory data in the conditions relevant to seismic cycles throughout the crust, explaining the focus of large earthquakes in collision, subduction, and continental and oceanic transform settings.
more »
« less
- Award ID(s):
- 1848192
- PAR ID:
- 10580956
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 52
- Issue:
- 6
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Earthquake nucleation is a fundamental problem in earthquake science and has practical implications for forecasting seismic hazards. Laboratory experiments performed on large, meter‐scale fault systems offer unique insights into the nucleation process because the migration and expansion of the nucleation zone can be precisely detected, measured, and characterized using arrays of local strain and slip measurements. We report on a series of laboratory experiments conducted on a 1‐m direct shear machine. We sheared layers of quartz gouge between roughened acrylic forcing blocks over a range of normal stresses between 3 and 12 MPa, generating a spectrum of slip modes, ranging from aseismic creep to fast‐dynamic rupture. Co‐seismic slip, peak slip velocity, and high‐frequency acoustic energy content of laboratory earthquakes increases systematically with both cumulative fault slip and normal stress. Slower and smaller laboratory earthquake sequences have larger nucleation zones, creep more during their inter‐seismic period, and are deficient in high‐frequency energy compared to larger and faster rupture sequences. We find that the critical nucleation length scale,H*, scales inversely with cumulative fault slip and normal stress. A reduction inH*and an increase in event size can be explained by a decrease in the critical slip distance,Dc, or an increase in the frictional rate parameterb–aand is likely driven by shear localization. Together, our results indicate that homogeneous, mature fault zones that have undergone more cumulative fault slip are expected to have smallerH*and can more easily host dynamic instabilities, relative to immature faults.more » « less
-
Abstract Tectonic faults fail through a spectrum of slip modes, ranging from slow aseismic creep to rapid slip during earthquakes. Understanding the seismic radiation emitted during these slip modes is key for advancing earthquake science and earthquake hazard assessment. In this work, we use laboratory friction experiments instrumented with ultrasonic sensors to document the seismic radiation properties of slow and fast laboratory earthquakes. Stick‐slip experiments were conducted at a constant loading rate of 8 μm/s and the normal stress was systematically increased from 7 to 15 MPa. We produced a full spectrum of slip modes by modulating the loading stiffness in tandem with the fault zone normal stress. Acoustic emission data were recorded continuously at 5 MHz. We demonstrate that the full continuum of slip modes radiate measurable high‐frequency energy between 100 and 500 kHz, including the slowest events that have peak fault slip rates <100 μm/s. The peak amplitude of the high‐frequency time‐domain signals scales systematically with fault slip velocity. Stable sliding experiments further support the connection between fault slip rate and high‐frequency radiation. Experiments demonstrate that the origin of the high‐frequency energy is fundamentally linked to changes in fault slip rate, shear strain, and breaking of contact junctions within the fault gouge. Our results suggest that having measurements close to the fault zone may be key for documenting seismic radiation properties and fully understanding the connection between different slip modes.more » « less
-
Abstract While analysis of glacial seismicity continues to be a widely used method for interpreting glacial processes, the underlying mechanics controlling glacial stick‐slip seismicity remain speculative. Here, we report on laboratory shear experiments of debris‐laden ice slid over a bedrock asperity under carefully controlled conditions. By modifying the elastic loading stiffness, we generated the first laboratory icequakes. Our work represents the first comprehensive lab observations of unstable ice‐slip events and replicates several seismological field observations of glacier slip, such as slip velocity, stress drop, and the relationship between stress drop and recurrence interval. We also observe that stick‐slips initiate above a critical driving velocity and that stress drop magnitude decreases with further increases in velocity, consistent with friction theory and rock‐on‐rock friction laboratory experiments. Our results demonstrate that glacier slip behavior can be accurately predicted by the constitutive rate‐and‐state friction laws that were developed for rock friction.more » « less
-
Abstract While many large earthquakes are preceded by observable foreshocks, the mechanism responsible for the occurrence of these smaller‐scale seismic events remains uncertain. One physical explanation of foreshocks with growing support is that they are produced by the interaction of slow slip with fault heterogeneity. Inspired by the suggestion from laboratory experiments that foreshocks occur on fault asperities (bumps), we explore rate‐and‐state fault models with patches of higher normal stress embedded in a larger seismogenic region by conducting 3‐D numerical simulations of their behavior over long‐term sequences of aseismic and seismic slips. The models do produce smaller‐scale seismicity during the aseismic nucleation of larger‐scale seismic events. These smaller‐scale events have reasonable stress drops, despite the highly elevated compression assigned to the source patches. We find that the two main factors contributing to the reasonable stress drops are the significant extent of the rupture into the region surrounding the patches and the aseismic stress release just prior to the seismic events. The smaller‐scale seismicity can only occur if a sufficient separation in nucleation scales between the foreshock‐like events and mainshocks is achieved. Our modeling provides insight into the conditions conducive for generating foreshocks on both natural and laboratory faults.more » « less
An official website of the United States government
