skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 1, 2026

Title: Du Bois property of log centers
The analytic aspects of multiplier ideals, log canonical thresholds and log canonical centers played an important role in several papers of Demailly, including [DEL00, Dem01, DK01, Dem12, DP14, Dem16, CDM17, Dem18]. Log canonical centers are seminormal by [Amb03, Fuj17], even Du Bois by [KK10, KK20]. This has important applications to birational geometry and moduli theory; see [KK10, KK20] or [Kol23, Sec.2.5]. We recall the concept of Du Bois singularities in Definition-Theorem 4. An unusual aspect is that this notion makes sense for complex spaces that have irreducible components of different dimension. This is crucial even for the statement of our theorem. In this note we generalize the results of [KK10, KK20] by showing that if a closed subset is 'close enough' to being a union of log canonical centers, then it is Du Bois. The minimal discrepancy is a nonnegative rational number, that measures the deviation from being a union of log canonical centers. The log canonical gap gives the precise notion of 'closeness.'  more » « less
Award ID(s):
2100389 1951376
PAR ID:
10581606
Author(s) / Creator(s):
;
Publisher / Repository:
International Press
Date Published:
Journal Name:
Pure and Applied Mathematics Quarterly
Volume:
21
Issue:
3
ISSN:
1558-8599
Page Range / eLocation ID:
1195 to 1207
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Recent progress in the deformation theory of Calabi–Yau varieties $$Y$$ with canonical singularities has highlighted the key role played by the higher Du Bois and higher rational singularities, and especially by the so-called $$k$$-liminal singularities for $$k\ge 1$$. The goal of this paper is to show that certain aspects of this study extend naturally to the $$0$$-liminal case as well, that is, to Calabi–Yau varieties $$Y$$ with Gorenstein log canonical, but not canonical, singularities. In particular, we show the existence of first order smoothings of $$Y$$ in the case of isolated $$0$$-liminal hypersurface singularities, and extend Namikawa’s unobstructedness theorem for deformations of singular Calabi–Yau three-folds $$Y$$ with canonical singularities to the case where $$Y$$ has an isolated $$0$$-liminal lci singularity under suitable hypotheses. Finally, we describe an interesting series of examples. 
    more » « less
  2. Higher rational and higher Du Bois singularities have recently been introduced as natural generalizations of the standard definitions of rational and Du Bois singularities. In this note, we discuss these properties for isolated singularities, especially in the locally complete intersection (lci) case. First, we reprove the fact that a k k -rational isolated singularity is k k -Du Bois without any lci assumption. For isolated lci singularities, we give a complete characterization of the k k -Du Bois and k k -rational singularities in terms of standard invariants of singularities. In particular, we show that k k -Du Bois singularities are ( k −<#comment/> 1 ) (k-1) -rational for isolated lci singularities. In the course of the proof, we establish some new relations between invariants of isolated lci singularities and show that many of these vanish. The methods also lead to a quick proof of an inversion of adjunction theorem in the isolated lci case. Finally, we discuss some results specific to the hypersurface case. 
    more » « less
  3. Guruswami, Venkatesan (Ed.)
    Inspired by the classic problem of Boolean function monotonicity testing, we investigate the testability of other well-studied properties of combinatorial finite set systems, specifically intersecting families and union-closed families. A function f: {0,1}ⁿ → {0,1} is intersecting (respectively, union-closed) if its set of satisfying assignments corresponds to an intersecting family (respectively, a union-closed family) of subsets of [n]. Our main results are that - in sharp contrast with the property of being a monotone set system - the property of being an intersecting set system, and the property of being a union-closed set system, both turn out to be information-theoretically difficult to test. We show that: - For ε ≥ Ω(1/√n), any non-adaptive two-sided ε-tester for intersectingness must make 2^{Ω(n^{1/4}/√{ε})} queries. We also give a 2^{Ω(√{n log(1/ε)})}-query lower bound for non-adaptive one-sided ε-testers for intersectingness. - For ε ≥ 1/2^{Ω(n^{0.49})}, any non-adaptive two-sided ε-tester for union-closedness must make n^{Ω(log(1/ε))} queries. Thus, neither intersectingness nor union-closedness shares the poly(n,1/ε)-query non-adaptive testability that is enjoyed by monotonicity. To complement our lower bounds, we also give a simple poly(n^{√{nlog(1/ε)}},1/ε)-query, one-sided, non-adaptive algorithm for ε-testing each of these properties (intersectingness and union-closedness). We thus achieve nearly tight upper and lower bounds for two-sided testing of intersectingness when ε = Θ(1/√n), and for one-sided testing of intersectingness when ε = Θ(1). 
    more » « less
  4. We use the framework of perfectoid big Cohen-Macaulay (BCM) algebras to define a class of singularities for pairs in mixed characteristic, which we call purely BCM-regular singularities, and a corresponding adjoint ideal. We prove that these satisfy adjunction and inversion of adjunction with respect to the notion of BCM-regularity and the BCM test ideal defined by the first two authors. We compare them with the existing equal characteristic purely log terminal (PLT) and purely F F -regular singularities and adjoint ideals. As an application, we obtain a uniform version of the Briançon-Skoda theorem in mixed characteristic. We also use our theory to prove that two-dimensional Kawamata log terminal singularities are BCM-regular if the residue characteristic p > 5 p>5 , which implies an inversion of adjunction for three-dimensional PLT pairs of residue characteristic p > 5 p>5 . In particular, divisorial centers of PLT pairs in dimension three are normal when p > 5 p > 5 . Furthermore, in Appendix A we provide a streamlined construction of perfectoid big Cohen-Macaulay algebras and show new functoriality properties for them using the perfectoidization functor of Bhatt and Scholze. 
    more » « less
  5. In a previous paper (Farajzadeh-Tehrani in Geom Topol 26:989–1075, 2022), for any logarithmic symplectic pair (X, D) of a symplectic manifold X and a simple normal crossings symplectic divisor D, we introduced the notion of log pseudo-holomorphic curve and proved a compactness theorem for the moduli spaces of stable log curves. In this paper, we introduce a natural Fredholm setup for studying the deformation theory of log (and relative) curves. As a result, we obtain a logarithmic analog of the space of Ruan–Tian perturbations for these moduli spaces. For a generic compatible pair of an almost complex structure and a log perturbation term, we prove that the subspace of simple maps in each stratum is cut transversely. Such perturbations enable a geometric construction of Gromov–Witten type invariants for certain semi-positive pairs (X, D) in arbitrary genera. In future works, we will use local perturbations and a gluing theorem to construct log Gromov–Witten invariants of arbitrary such pair (X, D). 
    more » « less