skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spatiotemporal Evolution of Marine Heatwaves Globally
Abstract The spatiotemporal evolution of marine heatwaves (MHWs) is explored using a tracking algorithm called Ocetrac that provides the objective characterization of MHW spatiotemporal evolution. Candidate MHW grid points are defined in detrended gridded sea temperature data using a seasonally varying temperature threshold. Identified MHW points are collected into spatially distinct objects using edge detection with weak sensitivity to edge detection and size percentile threshold criteria at each time step. Ocetrac then uses 3D connectivity to determine if these objects are part of the same event, but Ocetrac only defines the full MHW event after all time steps have been processed, limiting its use in predictability studies. Here, Ocetrac is applied to monthly satellite sea surface temperature data from September 1981 through January 2021. The resulting MHWs are characterized by their intensity, duration, and total area covered. The global analysis shows that MHWs in the Gulf of Maine and Mediterranean Sea are spatially isolated, while major MHWs in the Pacific and Indian Oceans are connected in space and time. The largest and most long-lasting MHW using this method lasts for 60 months from November 2013 to October 2018, encompassing previously identified MHW events including those in the northeast Pacific (2014–15), the Tasman Sea (2015–16, 2017–18), and the Great Barrier Reef (2016). Significance StatementThis study introduces Ocetrac, a method to track the spatiotemporal evolution of marine heatwaves (MHWs). It is applied to satellite sea surface temperature data from 1981 to 2021. The method objectively identifies and tracks MHWs in space and time while allowing for splitting and merging. The resulting MHWs are characterized by intensity, duration, and total area covered. Marine heatwaves can have significant ecological consequences, including biodiversity loss and mortality, geographical shifts, and range reductions in marine species and community structure changes when physiological thresholds are exceeded. This results in both ecological and economic impacts. Ocetrac provides a method of tracking the space and time evolution of MHWs that can provide a visualization that demonstrates the global impact of these events.  more » « less
Award ID(s):
2022874
PAR ID:
10656424
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
American Meteorological Society Journal of Ocean and Atmospheric Technology
Date Published:
Journal Name:
Journal of Atmospheric and Oceanic Technology
Volume:
41
Issue:
12
ISSN:
0739-0572
Page Range / eLocation ID:
1247 to 1263
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Schijf, Johan (Ed.)
    Marine heatwaves (MHWs) are warm sea surface temperature (SST) anomalies with substantial ecological and economic consequences. Observations of MHWs are based on relatively short instrumental records, which limit the ability to forecast these events on decadal and longer timescales. Paleoclimate reconstructions can extend the observational record and help to evaluate model performance under near future conditions, but paleo-MHW reconstructions have received little attention, primarily because marine sediments lack the temporal resolution to record short-lived events. Individual foraminifera analysis (IFA) of paleotemperature proxies presents an intriguing opportunity to reconstruct past MHW variability if strong relationships exist between SST distributions and MHW metrics. Here, we describe a method to test this idea by systematically evaluating relationships between MHW metrics and SST distributions that mimic IFA data using a 2000-member linear inverse model (LIM) ensemble. Our approach is adaptable and allows users to define MHWs based on multiple duration and intensity thresholds and to model seasonal biases in five different foraminifera species. It also allows uncertainty in MHW reconstructions to be calculated for a given number of IFA measurements. An example application of our method at 12 north Pacific locations suggests that the cumulative intensity of short-duration, low-intensity MHWs is the strongest target for reconstruction, but that the error on reconstructions will rely heavily on sedimentation rate and the number of foraminifera analyzed. This is evident when a robust transfer function is applied to new core-top oxygen isotope data from 37 individualGlobigerina bulloidesat a site with typical marine sedimentation rates. In this example application, paleo-MHW reconstructions have large uncertainties that hamper comparisons to observational data. However, additional tests demonstrate that our approach has considerable potential to reconstruct past MHW variability at high sedimentation rate sites where hundreds of foraminifera can be analyzed. 
    more » « less
  2. ABSTRACT Marine heatwaves (MHWs) caused by multiple phenomena with days to months duration are increasingly common disturbances in ocean ecosystems. We investigated the impacts of MHWs on pelagic communities using spatially resolved time‐series of multiple trophic levels from the Southern California Current Ecosystem. Indices of phytoplankton biomass mostly declined during MHWs because of reduced nutrient supply (exceptingProchlorococcus) and were generally more sensitive to marine heatwave intensity than duration. By contrast, mesozooplankton (as estimated by zooplankton displacement volume) were somewhat more strongly correlated with MHW duration than intensity. Zooplankton anomalies were also positively correlated with fucoxanthin (diatom) anomalies, highlighting possible bottom‐up influences during MHWs. Mobile consumers (forage fish) showed more complex responses, with fish egg abundance declining during MHWs but not correlating with any MHW characteristics. Our findings provide partial evidence of how MHW characteristics can shape variable ecological responses due to the differing life spans and behaviours of different trophic levels. 
    more » « less
  3. Coastal marine heatwaves have destructive and lasting impacts on foundational species 13 and are increasing in frequency, duration, and magnitude. High atmospheric temperatures are 14 often associated with marine heatwaves (MHW) which are defined as 5-days of water 15 temperatures above a seasonally varying 90th percentile threshold. In this study we consider the 16 prevalence of MHW propagation into surficial sediments to cause sediment heatwaves (SHW). 17 Within a shallow, subtidal seagrass meadow in Virginia, USA, sediment temperature was 18 measured at hourly intervals at a depth of 5 cm between June 2020-October 2022 at the meadow 19 edge and central meadow interior. The observed sediment temperature, along with a 29-year 20 record of water temperature and water level was used to develop a sediment temperature model 21 for each location. Modeled sediment temperatures were used to identify sediment heatwaves that 22 may thermally stress belowground seagrass. At both meadow locations, sediment heatwave 23 frequency increased at a rate twice that of MHWs in the average global open ocean, coinciding 24 with a 172% increase in the annual number of SHW days, from 11 to 30 days year-1 between 25 1994-2022. Sediment heatwaves at both meadow locations co-occurred with a MHW 79-81% of 26 the time, with nearly all SHWs having a zero day lag. The top 10% most extreme MHWs and 27 SHWs occurred between November and April when thermal stress to seagrass was unlikely. In 28 June 2015 a SHW co-occurred with an anomalously long duration MHW that was associated 29 with a 90% decline in seagrass from this system, suggesting that SHWs may have contributed to 30 the observed seagrass loss. These results document heatwave propagation across the pelagic-31 sediment interface which likely occur broadly in shallow systems with impacts to critical coastal 32 ecosystem processes and species dynamics. 
    more » « less
  4. Abstract Prediction of the rapid intensification (RI) of tropical cyclones (TCs) is crucial for improving disaster preparedness against storm hazards. These events can cause extensive damage to coastal areas if occurring close to landfall. Available models struggle to provide accurate RI estimates due to the complexity of underlying physical mechanisms. This study provides new insights into the prediction of a subset of rapidly intensifying TCs influenced by prolonged ocean warming events known as marine heatwaves (MHWs). MHWs could provide sufficient energy to supercharge TCs. Preconditioning by MHW led to RI of recent destructive TCs, Otis (2023), Doksuri (2023), and Ian (2022), with economic losses exceeding $150 billion. Here, we analyze the TC best track and sea surface temperature data from 1981 to 2023 to identify hotspot regions for compound events, where MHWs and RI of tropical cyclones occur concurrently or in succession. Building upon this, we propose an ensemble machine learning model for RI forecasting based on storm and MHW characteristics. This approach is particularly valuable as RI forecast errors are typically largest in favorable environments, such as those created by MHWs. Our study offers insight into predicting MHW TCs, which have been shown to be stronger TCs with potentially higher destructive power. Here, we show that using MHW predictors instead of the conventional method of using sea surface temperature reduces the false alarm rate by 30%. Overall, our findings contribute to coastal hazard risk awareness amidst unprecedented climate warming causing more frequent MHWs. 
    more » « less
  5. Abstract Multi-year marine heatwaves (MHWs) in the Gulf of Alaska (GOA) are major climate events with lasting ecological and economic effects. Though often seen as local Pacific phenomena, our study shows their persistence depends on trans-basin interactions between the North Pacific and North Atlantic. Using observational data and climate model experiments, we find that prolonged MHWs occur as sequential warming episodes triggered by atmospheric wave trains crossing ocean basins. These wave trains alter surface heat flux, initiating MHWs in the GOA and changing North Atlantic sea surface temperatures (SSTs). In turn, Atlantic SST anomalies reinforce wave activity, fueling subsequent MHW episodes in a feedback loop. This mechanism appears in historical events (1949–52, 1962–65, 2013–16, and 2018–22), highlighting MHWs as a trans-basin phenomenon. Our findings link GOA MHWs to trans-basin atmospheric wave dynamics and identify North Atlantic SSTs as a potential predictor of their duration. 
    more » « less