skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Wireless radiofrequency network of distributed microsensors
Distributed sensing of a dynamic environment is typically characterized by the sparsity of events, such as neuronal firing in the brain. Using the brain as inspiration, an event-driven communication strategy is developed that enables the efficient transmission, accurate retrieval and interpretation of sparse events across a network of thousands of wireless microsensors  more » « less
Award ID(s):
2322600
PAR ID:
10582088
Author(s) / Creator(s):
;
Editor(s):
Lee, J; Nurmikko, A
Publisher / Repository:
Springer
Date Published:
Journal Name:
Nature Electronics
Edition / Version:
1
Volume:
7
Issue:
4
ISSN:
2520-1131
Page Range / eLocation ID:
264 to 265
Subject(s) / Keyword(s):
wireless large scale sensor netrworks
Format(s):
Medium: X Size: 2MB Other: pdf
Size(s):
2MB
Sponsoring Org:
National Science Foundation
More Like this
  1. A new housing development in a familiar neighborhood, a wrong turn that ends up lengthening a Sunday stroll: our internal representation of the world requires constant updating, and we need to be able to associate events separated by long intervals of time to finetune future outcome. This often requires neural connections to be altered. A brain region known as the hippocampus is involved in building and maintaining a map of our environment. However, signals from other brain areas can activate silent neurons in the hippocampus when the body is in a specific location by triggering cellular events called dendritic calcium spikes. Milstein et al. explored whether dendritic calcium spikes in the hippocampus could also help the brain to update its map of the world by enabling neurons to stop being active at one location and to start responding at a new position. Experiments in mice showed that calcium spikes could change which features of the environment individual neurons respond to by strengthening or weaking connections between specific cells. Crucially, this mechanism allowed neurons to associate event sequences that unfold over a longer timescale that was more relevant to the ones encountered in day-to-day life. A computational model was then put together, and it demonstrated that dendritic calcium spikes in the hippocampus could enable the brain to make better spatial decisions in future. Indeed, these spikes are driven by inputs from brain regions involved in complex cognitive processes, potentially enabling the delayed outcomes of navigational choices to guide changes in the activity and wiring of neurons. Overall, the work by Milstein et al. advances the understanding of learning and memory in the brain and may inform the design of better systems for artificial learning. 
    more » « less
  2. It is well-known that morphological features in the brain undergo changes due to traumatic events and associated disorders such as post-traumatic stress disorder (PTSD). However, existing approaches typically offer group-level comparisons, and there are limited predictive approaches for modeling behavioral outcomes based on brain shape features that can account for heterogeneity in PTSD, which is of paramount interest. We propose a comprehensive shape analysis framework representing brain sub-structures, such as the hippocampus, amygdala, and putamen, as parameterized surfaces and quantifying their shape differences using an elastic shape metric. Under this metric, we compute shape summaries (mean, covariance, PCA) of brain sub-structures and represent individual brain shapes by their principal scores under a shape-PCA basis. These representations are rich enough to allow visualizations of full 3D structures and help understand localized changes. In order to validate the elastic shape analysis, we use the principal components (PCs) to reconstruct the brain structures and perform further evaluation by performing a regression analysis to model PTSD and trauma severity using the brain shapes representedviaPCs and in conjunction with auxiliary exposure variables. We apply our method to data from the Grady Trauma Project (GTP), where the goal is to predict clinical measures of PTSD. The framework seamlessly integrates accurate morphological features and other clinical covariates to yield superior predictive performance when modeling PTSD outcomes. Compared to vertex-wise analysis and other widely applied shape analysis methods, the elastic shape analysis approach results in considerably higher reconstruction accuracy for the brain shape and reveals significantly greater predictive power. It also helps identify local deformations in brain shapes associated with PTSD severity. 
    more » « less
  3. The nervous systems converts the physical quantities sensed by its primary receptors into trains of events that are then processed in the brain. The unmatched efficiency in information processing has long inspired engineers to seek brain-like approaches to sensing and signal processing. The key principle pursued in neuromorphic sensing is to shed the traditional approach of periodic sampling in favor of an event-driven scheme that mimicks sampling as it occurs in the nervous system, where events are preferably emitted upon the change of the sensed stimulus. In this paper we highlight the advantages and challenges of event-based sensing and signal processing in the visual, auditory and olfactory domains. We also provide a survey of the literature covering neuromorphic sensing and signal processing in all three modalities. Our aim is to facilitate research in event-based sensing and signal processing by providing a comprehensive overview of the research performed previously as well as highlighting conceptual advantages, current progress and future challenges in the field. 
    more » « less
  4. Abstract Human brains experience whole-brain anatomic and functional changes throughout the lifespan. Age-related whole-brain network changes have been studied with functional magnetic resonance imaging (fMRI) to determine their low-frequency spatial and temporal characteristics. However, little is known about age-related changes in whole-brain fast dynamics at the scale of neuronal events. The present study investigated age-related whole-brain dynamics in resting-state electroencephalography (EEG) signals from 73 healthy participants from 6 to 65 years old via characterizing transient neuronal coactivations at a resolution of tens of milliseconds. These uncovered transient patterns suggest fluctuating brain states at different energy levels of global activations. Our results indicate that with increasing age, shorter lifetimes and more occurrences were observed in the brain states that show the global high activations and more consecutive visits to the global highest-activation brain state. There were also reduced transitional steps during consecutive visits to the global lowest-activation brain state. These age-related effects suggest reduced stability and increased fluctuations when visiting high-energy brain states and with a bias toward staying low-energy brain states. These age-related whole-brain dynamics changes are further supported by changes observed in classic alpha and beta power, suggesting its promising applications in examining the effect of normal healthy brain aging, brain development, and brain disease. 
    more » « less
  5. The emergence of Positron Emission Tomography (PET) imaging allows us to quantify the burden of amyloid plaques in-vivo, which is one of the hallmarks of Alzheimer’s disease (AD). However, the invasive exposure to radiation and high imaging cost significantly restrict the application of PET in characterizing the evolution of pathology burden which often requires longitudinal PET image sequences. In this regard, we propose a proof-of-concept solution to generate the complete trajectory of pathological events throughout the brain based on very limited number of PET scans. We present a novel variational autoencoder model to learn a latent population-level representation of neurodegeneration process based on the longitudinal β-amyloid measurements at each brain region and longitudinal diagnostic stages. As the propagation of pathological burdens follow the topology of brain connectome, we further cast our neural network into a supervised sequential graph VAE, where we use the brain network to guide the representation learning. Experiments show that the disentangled representation can capture disease-related dynamics of amyloid and forecast the level of amyloid depositions at future time points. 
    more » « less