We present an expression for the spectral gap, opening up new possibilities for performing and accelerating spectral calculations of quantum many-body systems. We develop and demonstrate one such possibility in the context of tensor network simulations. Our approach requires only minor modifications of the widely used simple update method and is computationally lightweight relative to other approaches. We validate it by computing spectral gaps of the 2D and 3D transverse-field Ising models and find strong agreement with previously reported perturbation theory results. Published by the American Physical Society2024
more »
« less
Toward coherent quantum computation of scattering amplitudes with a measurement-based photonic quantum processor
In recent years, applications of quantum simulation have been developed to study the properties of strongly interacting theories. This has been driven by two factors: on the one hand, needs from theorists to have access to physical observables that are prohibitively difficult to study using classical computing; on the other hand, quantum hardware becoming increasingly reliable and scalable to larger systems. In this work, we discuss the feasibility of using quantum optical simulation for studying scattering observables that are presently inaccessible via lattice QCD and are at the core of the experimental program at Jefferson Laboratory, the future Electron-Ion Collider, and other accelerator facilities. We show that recent progress in measurement-based photonic quantum computing can be leveraged to provide deterministic generation of required exotic gates and implementation in a single photonic quantum processor. Published by the American Physical Society2024
more »
« less
- Award ID(s):
- 2152168
- PAR ID:
- 10582291
- Publisher / Repository:
- American Physical Society (APS)
- Date Published:
- Journal Name:
- Physical Review Research
- Volume:
- 6
- Issue:
- 4
- ISSN:
- 2643-1564
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We propose and analyze deterministic protocols to generate qudit photonic graph states from quantum emitters. We show that our approach can be applied to generate any qudit graph state and we exemplify it by constructing protocols to generate one- and two-dimensional qudit cluster states, absolutely maximally entangled states, and logical states of quantum error-correcting codes. Some of these protocols make use of time-delayed feedback, while others do not. The only additional resource requirement compared to the qubit case is the ability to control multilevel emitters. These results significantly broaden the range of multiphoton entangled states that can be produced deterministically from quantum emitters. Published by the American Physical Society2024more » « less
-
Estimating a quantum phase is a necessary task in a wide range of fields of quantum science. To accomplish this task, two well-known methods have been developed in distinct contexts, namely, Ramsey interferometry (RI) in atomic and molecular physics and quantum phase estimation (QPE) in quantum computing. We demonstrate that these canonical examples are instances of a larger class of phase estimation protocols, which we call reductive quantum phase estimation (RQPE) circuits. Here, we present an explicit algorithm that allows one to create an RQPE circuit. This circuit distinguishes an arbitrary set of phases with a smaller number of qubits and unitary applications, thereby solving a general class of quantum hypothesis testing to which RI and QPE belong. We further demonstrate a tradeoff between measurement precision and phase distinguishability, which allows one to tune the circuit to be optimal for a specific application. Published by the American Physical Society2024more » « less
-
We provide some evidence for nonzero electron velocity at the tunnel exit in strong-field atomic ionization. Our investigation is based on the analysis of a suitably chosen correlation function which describes correlations between the two observables: the longitudinal electron velocity and the appearance of the photoelectron in the continuum at the end of the laser pulse. The results of the correlation function analysis that we perform are confirmed by the calculations using the quantum orbits method. Published by the American Physical Society2024more » « less
-
We study electromagnetic and gravitational properties of anti–de Seitter (AdS) black shells (also referred to as AdS black bubbles)—a class of quantum gravity motivated black hole mimickers, that in the classical limit are described as ultracompact shells of matter. We find that their electromagnetic properties are remarkably similar to black holes. We then discuss the extent to which these objects are distinguishable from black holes, both for intrinsic interest within the black shell model, and as a guide for similar efforts in other subclasses of exotic compact objects (ECOs). We study photon rings and lensing band characteristics, relevant for very large baseline interferometry (VLBI) observations, as well as gravitational wave observables—quasinormal modes in the eikonal limit and the static tidal Love number for nonspinning shells—relevant for ongoing and upcoming gravitational wave observations. Published by the American Physical Society2025more » « less
An official website of the United States government

