Abstract Recent studies on exceptional points (EPs) in non-Hermitian optical systems have revealed unique traits, including unidirectional invisibility, chiral mode switching and laser self-termination. In systems featuring gain/loss components, EPs are commonly accessed below the lasing threshold, i.e., in the linear regime. In this work, we experimentally demonstrate that EP singularities in coupled semiconductor nanolasers can be accessed above the lasing threshold, where they become branch points of a nonlinear dynamical system. Contrary to the common belief that unavoidable cavity detuning impedes the formation of EPs, here we demonstrate that such detuning is necessary for compensating the carrier-induced frequency shift, hence restoring the EP. Furthermore, we find that the pump imbalance at lasing EPs varies with the total pump power, enabling their continuous tracking. This work uncovers the unstable nature of EPs above laser threshold in coupled semiconductor lasers, offering promising opportunities for the realization of self-pulsing nanolaser devices and frequency combs.
more »
« less
Continuous recoil-driven lasing and cavity frequency pinning with laser-cooled atoms
Abstract Laser-cooled gases of atoms interacting with the field of an optical cavity are a versatile tool for quantum sensing and the simulation of quantum systems. These systems can exhibit phenomena such as self-organization phase transitions, lasing mechanisms, squeezed states and protection of quantum coherence. However, investigations of these phenomena typically occur in a discontinuous manner due to the need to reload atomic ensembles. Here we demonstrate hours-long continuous lasing from laser-cooled88Sr atoms loaded into a ring cavity. The required inversion to produce lasing arises from inversion in the atomic-momentum degrees of freedom, which is linked to the self-organization phase transitions and collective atomic recoil lasing observed previously only in a cyclic fashion. We find that over a broad parameter range, the sensitivity of the lasing frequency to changes in cavity frequency is significantly reduced due to an atomic loss mechanism, suggesting a potential approach for mitigating low-frequency cavity noise. Our findings open opportunities for continuous cavity quantum electrodynamics experiments and robust and continuous super-radiant lasers.
more »
« less
- Award ID(s):
- 2016244
- PAR ID:
- 10582358
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Physics
- Volume:
- 21
- Issue:
- 6
- ISSN:
- 1745-2473
- Format(s):
- Medium: X Size: p. 902-908
- Size(s):
- p. 902-908
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Radiofrequency (RF) injection locking and spectral broadening of a terahertz (THz) quantum‐cascade vertical‐external‐cavity surface‐emitting laser (QC‐VECSEL) is demonstrated. An intracryostat VECSEL focusing cavity design is used to enable continuous‐wave lasing with a cavity length over 30 mm, which corresponds to a round‐trip frequency near 5 GHz. Strong RF current modulation is injected to the QC‐metasurface electrical bias to pull and lock the round‐trip frequency. The injection locking range at various RF injection powers is recorded and compared with the injection locking theory. Moreover, the lasing spectrum broadens from 14 GHz in free‐running mode to a maximum spectral width around 110 GHz with 20 dBm of injected RF power. This experimental setup is suitable for further exploration of active mode‐locking and picosecond pulse generation in THz QC‐VECSELs.more » « less
-
We demonstrate a method to obtain homogeneous atom-cavity coupling by selecting and keeping 87Rb atoms that are near maximally coupled to the cavity's standing-wave mode. We select atoms by imposing an AC Stark shift on the ground state hyperfine microwave transition frequency with light injected into the cavity. We then induce a spin flip with microwaves that are resonant for atoms that are near maximally coupled to the cavity mode of interest, after which, we use radiation pressure forces to remove from the cavity all the atoms in the initial spin state. Achieving greater homogeneity in the atom-cavity coupling will potentially enhance entanglement generation, intracavity driving of atomic transitions, cavity-optomechanics, and quantum simulations. This approach can easily be extended to other atomic species with microwave or optical transitions.more » « less
-
Abstract An ensemble of atoms can operate as a quantum sensor by placing atoms in a superposition of two different states. Upon measurement of the sensor, each atom is individually projected into one of the two states. Creating quantum correlations between the atoms, that is entangling them, could lead to resolutions surpassing the standard quantum limit 1–3 set by projections of individual atoms. Large amounts of entanglement 4–6 involving the internal degrees of freedom of laser-cooled atomic ensembles 4–16 have been generated in collective cavity quantum-electrodynamics systems, in which many atoms simultaneously interact with a single optical cavity mode. Here we report a matter-wave interferometer in a cavity quantum-electrodynamics system of 700 atoms that are entangled in their external degrees of freedom. In our system, each individual atom falls freely under gravity and simultaneously traverses two paths through space while entangled with the other atoms. We demonstrate both quantum non-demolition measurements and cavity-mediated spin interactions for generating squeezed momentum states with directly observed sensitivity $$3\,.\,{4}_{-0.9}^{+1.1}$$ 3 . 4 − 0.9 + 1.1 dB and $$2\,.\,{5}_{-0.6}^{+0.6}$$ 2 . 5 − 0.6 + 0.6 dB below the standard quantum limit, respectively. We successfully inject an entangled state into a Mach–Zehnder light-pulse interferometer with directly observed sensitivity $$1\,.\,{7}_{-0.5}^{+0.5}$$ 1 . 7 − 0.5 + 0.5 dB below the standard quantum limit. The combination of particle delocalization and entanglement in our approach may influence developments of enhanced inertial sensors 17,18 , searches for new physics, particles and fields 19–23 , future advanced gravitational wave detectors 24,25 and accessing beyond mean-field quantum many-body physics 26–30 .more » « less
-
We analyze the dynamics leading to radiative cooling of an atomic ensemble confined inside an optical cavity when the atomic dipolar transitions are incoherently pumped and can synchronize. Our study is performed in the semiclassical regime and assumes that cavity decay is the largest rate in the system dynamics. We identify three regimes characterizing the cooling. At first hot atoms are individually cooled by the cavity friction forces. After this stage, the atoms’ center-of-mass motion is further cooled by the coupling to the internal degrees of freedom while the dipoles synchronize. In the latest stage dipole-dipole correlations are stationary and the center-of-mass motion is determined by the interplay between friction and dispersive forces due to the coupling with the collective dipole. We analyze this asymptotic regime by means of a mean-field model and show that the width of the momentum distribution can be of the order of the photon recoil. Furthermore, the internal excitations oscillate spatially with the cavity standing wave forming an antiferromagnetic-like order.more » « less
An official website of the United States government
