skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: Electrochemical Sensing of Hydrogen Peroxide Using Composite Bismuth Oxide/Bismuth Oxyselenide Nanostructures: Antagonistic Influence of Tungsten Doping
This study investigates the underlying mechanisms of hydrogen peroxide (H₂O₂) sensing using a composite material of bismuth oxide and bismuth oxyselenide (Bi2OxSey). The antagonistic effect of tungsten (W)-doping on the electrochemical behavior was also examined. Undoped, 2 mol%, 4 mol%, and 6 mol% W-doped Bi2OxSey nanostructures were synthesized using a one-pot solution phase method involving selenium powder and hydrazine hydrate. W-doping induced a morphological transformation from nanosheets to spherical nanoparticles and amorphization of the bismuth oxyselenide phase. Electrochemical sensing measurements were conducted using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). H₂O₂ detection was achieved over a wide concentration range of 0.02 to 410 µM. In-depth CV analysis revealed the complex interplay of oxidation-reduction processes within the bismuth oxide and Bi2O2Se components of the composite material. W-doping exhibited an antagonistic effect, significantly reducing sensitivity. Among the studied samples, undoped Bi2OxSeγ demonstrated a high sensitivity of 83 μA μM⁻1 cm⁻2 for the CV oxidation peak at 0 V, while 6 mol% W-Bi2OxSey became completely insensitive to H2O2. Interestingly, DPV analysis showed a reversal of sensitivity trends with 2 and 4 mol% W-doping. The applicability of these samples for real-world analysis, including rainwater and urine, was also demonstrated.  more » « less
Award ID(s):
2122044
PAR ID:
10582783
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Electrochem
Volume:
5
Issue:
4
ISSN:
2673-3293
Page Range / eLocation ID:
455 to 469
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Cost-effective valorization of biomass into advanced carbon remains a challenge. Here we reported a facile and ultrafast laser writing technique to convert biomass into porous graphene for electrochemical sensing. Laser-induced graphene (LIG) was synthesized from a fully biomass-based film composed of kraft lignin (KL) and cellulose nanofibers (CNFs). The LIG-based electrode was applied to detect dopamine using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. Dopamine with a concentration ranging from 5 to 40 μM was detected linearly, with a sensitivity of 4.39 μA μM −1 cm −2 . Our study eliminated the use of synthetic polymer for lignin-based film formation. It demonstrated the feasibility of using the film fully composed of biomass for LIG formation. Furthermore, derived LIG electrodes were shown to have high electrochemical sensing performance. 
    more » « less
  2. null (Ed.)
    It is well known that an excess of hydroxyl radicals (˙OH) in the human body is responsible for oxidative stress-related diseases. An understanding of the relationship between the concentration of ˙OH and those diseases could contribute to better diagnosis and prevention. Here we present a supersensitive nanosensor integrated with an electrochemical method to measure the concentration of ˙OH in vitro. The electrochemical sensor consists of a composite comprised of ultrasmall cerium oxide nanoclusters (<2 nm) grafted to a highly conductive carbon deposited on a screen-printed carbon electrode (SPCE). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to analyze the interaction between cerium oxide nanoclusters and ˙OH. The CV results demonstrated that this electrochemical sensor had the capacity of detecting ˙OH with a high degree of accuracy and selectivity, achieving a consistent performance. Additionally, EIS results confirmed that our electrochemical sensor was able to differentiate ˙OH from hydrogen peroxide (H 2 O 2 ), which is another common reactive oxygen species (ROS) found in the human body. The limit of detection (LOD) observed with this electrochemical sensor was of 0.6 μM. Furthermore, this nanosized cerium oxide-based electrochemical sensor successfully detected in vitro the presence of ˙OH in preosteoblast cells from newborn mouse bone tissue. The supersensitive electrochemical sensor is expected to be beneficially used in multiple applications, including medical diagnosis, fuel–cell technology, and food and cosmetic industries. 
    more » « less
  3. Bismuth ferrite (BiFeO3) nanocomposites were synthesized using a novel nano-agitator bead milling method followed by calcination. Bismuth oxide and iron oxide nanoparticles were mixed in a stoichiometric ratio and milled for 3 h and calcined at 650 °C in air. X-ray diffraction with Rietveld refinement, scanning electron microscopy, and transmission electron microscopy techniques were used to elucidate the structure of BiFeO3. The particle diameter was found to be ∼17 nm. Magnetic and electrical measurements were performed, and these results were compared with those of similar methods. Mostly, BiFeO3 was obtained with minor secondary phase formation. The resulting powder was weakly ferromagnetic with a remnant magnetization of 0.078 emu/g. This can be attributed to residual strain and defects introduced during the milling process. Electrical testing revealed a high leakage current density that is typical of undoped bismuth ferrite. 
    more » « less
  4. The goal of this stydy was to explore the potential of the enhanced corrosion resistance of Ti(N,O) cathodic arc evaporation-coated 304L stainless steel using oxide nano-layers deposited by atomic layer deposition (ALD). In this study, we deposited Al2O3, ZrO2, and HfO2 nanolayers of two different thicknesses by ALD onto Ti(N,O)-coated 304L stainless steel surfaces. XRD, EDS, SEM, surface profilometry, and voltammetry investigations of the anticorrosion properties of the coated samples are reported. The amorphous oxide nanolayers homogeneously deposited on the sample surfaces exhibited lower roughness after corrosion attack compared to the Ti(N,O)-coated stainless steel. The best corrosion resistance was obtained for the thickest oxide layers. All samples coated with thicker oxide nanolayers augmented the corrosion resistance of the Ti(N,O)-coated stainless steel in a saline, acidic, and oxidising environment (0.9% NaCl + 6% H2O2, pH = 4), which is of interest for building corrosion-resistant housings for advanced oxidation systems such as cavitation and plasma-related electrochemical dielectric barrier discharge for breaking down persistent organic pollutants in water. 
    more » « less
  5. Bismuth oxide nanomaterials are increasingly recognized for their promising electronic and optical properties, particularly in electrochemical and biomedical applications. This study demonstrates that various bismuth oxide nanostructures can be synthesized through pulsed laser ablation in liquids (PLAL) by adjusting the concentration of dissolved gases from ambient conditions. Structural and compositional analyses were performed using x-ray diffraction, Raman spectroscopy, FTIR spectroscopy, and morphological investigations were conducted using atomic force microscopy and transmission electron microscopy. Our findings indicate that factors such as dissolved gases, laser fluence, and nanoparticle aging are crucial in determining the final structure and composition of the resulting nanomaterial. The phases observed ranged from spherical metallic bismuth nanoparticles to monoclinic bismuth oxide nanowire bundles, and orthorhombic bismuth carbonate oxide nanosheets. Dissolved gases are shown to influence not only the primary particles formed immediately after ablation, but also significantly impact the aging process of the colloid as well. Additionally, fluence plays an important role in the production of reactive oxygen species, thereby influencing the reactive pathways experienced by the ablated material and its subsequent formation into nanostructures. A notable result, emphasizing the significance of factors such as liquid environment and fluence when performing PLAL on reactive targets like bismuth, is seen in high fluence (20 J/cm) samples under ambient conditions. These samples initially display an amalgamation of BiO nanowire bundles and carbonate nanosheets, which upon aging, transition to predominantly bismuth oxide nanowire bundles. This contrasts with samples produced in a saturated CO environment where bismuth carbonate nanosheets remain highly stable in the colloid. 
    more » « less