Abstract The fine-tuning of topologically protected states in quantum materials holds great promise for novel electronic devices. However, there are limited methods that allow for the controlled and efficient modulation of the crystal lattice while simultaneously monitoring the changes in the electronic structure within a single sample. Here, we apply significant and controllable strain to high-quality HfTe5samples and perform electrical transport measurements to reveal the topological phase transition from a weak topological insulator phase to a strong topological insulator phase. After applying high strain to HfTe5and converting it into a strong topological insulator, we found that the resistivity of the sample increased by 190,500% and that the electronic transport was dominated by the topological surface states at cryogenic temperatures. Our results demonstrate the suitability of HfTe5as a material for engineering topological properties, with the potential to generalize this approach to study topological phase transitions in van der Waals materials and heterostructures.
more »
« less
This content will become publicly available on March 1, 2026
AC electrical transport detection of magnetic properties of small, granular, and heterogeneous samples
Experimental constraints and sample limitations can preclude ideal measurements of electrical transport properties of materials. In such situations, AC electrical transport methods are often employed due to a significant increase in signal-to-noise ratio they can provide. However, dynamic effects that are not often accounted for may be present that may modify the signals in these measurements. In particular, dynamic filtering effects are prominent in small, granular, and heterogeneous materials. We demonstrate that a lock-in amplifier based circuit can distinguish between these DC transport and AC filtering effects. We further demonstrate that this filtering can reveal distinct signatures of magnetic transitions while providing a measure of sample quality.
more »
« less
- Award ID(s):
- 2104881
- PAR ID:
- 10582830
- Publisher / Repository:
- AIP
- Date Published:
- Journal Name:
- Review of Scientific Instruments
- Volume:
- 96
- Issue:
- 3
- ISSN:
- 0034-6748
- Page Range / eLocation ID:
- 034703
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We present magnetic characterization, charge resistivity, and optical photoluminescence measurements on amorphous yttrium iron oxide thin films (a-Y–Fe–O), with supporting comparisons to amorphous germanium (a-Ge) films. We measured magnetic properties with both SQUID magnetometry and polarized neutron reflectometry. These results not only confirm that a-Y–Fe–O is a disordered magnetic material with strong predominantly antiferromagnetic exchange interactions and a high degree of frustration, but also that it is best understood electrically as a disordered semiconductor. As with amorphous germanium, a-Y–Fe–O obeys expectations for variable-range hopping through localized electron states over a wide range of temperature. We also clarify the consequences of charge transport through such a semiconducting medium for non-local voltage measurements intended to probe spin transport in nominally insulating magnetic materials. We further compare non-local resistance measurements made with “quasi-dc” automated current reversal to ac measurements made with a lock-in amplifier. These show that the “quasi-dc” measurement has an effective ac current excitation with frequency up to approximately 22 Hz, and that this effective ac excitation can cause artifacts in these measurements including incorrect sign of the non-local resistance. This comprehensive investigation of non-local resistance measurements in a-Y–Fe–O shows no evidence of spin transport on micrometer length scales, which is contrary to our original work, and in line with more recent investigations by other groups.more » « less
-
We demonstrate a compact, portable and reliable, poor-man’s 8-channel interconnect and measure, in the 50- 100 MHz VHF radiofrequency range, the path-dependent voltage transfer function across drop-cast poly(3,4- ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). The setup may be inexpensively deployed for single-input-multiple-output (SIMO) self-sensing materials with computational impedance tomography algorithms. We test our setup with PEDOT:PSS samples that are dried in a static magnetic field. These samples exhibit anisotropic electrical conductivities and nanostructure morphologies. Voltages across the sample vary 2dB as a result of this anisotropy. This processing-dependent anisotropy of PEDOT:PSS may be useful in future efforts aimed at deconvolving the path-dependent electrical tomography measurements, as necessary for such a sensing system.more » « less
-
Abstract 2D layered materials have emerged in recent years as a new platform to host novel electronic, optical, or excitonic physics and develop unprecedented nanoelectronic and energy applications. By definition, these materials are strongly anisotropic between the basal plane and cross the plane. The structural and property anisotropies inside their basal plane, however, are much less investigated. Black phosphorus, for example, is a 2D material that has such in‐plane anisotropy. Here, a rare chemical form of arsenic, called black‐arsenic (b‐As), is reported as a cousin of black phosphorus, as an extremely anisotropic layered semiconductor. Systematic characterization of the structural, electronic, thermal, and electrical properties of b‐As single crystals is performed, with particular focus on its anisotropies along two in‐plane principle axes, armchair (AC) and zigzag (ZZ). The analysis shows that b‐As exhibits higher or comparable electronic, thermal, and electric transport anisotropies between the AC and ZZ directions than any other known 2D crystals. Such extreme in‐plane anisotropies can potentially implement novel ideas for scientific research and device applications.more » « less
-
An intriguing new class of two-dimensional (2D) materials based on metal–organic frameworks (MOFs) has recently been developed that displays electrical conductivity, a rarity among these nanoporous materials. The emergence of conducting MOFs raises questions about their fundamental electronic properties, but few studies exist in this regard. Here, we present an integrated theory and experimental investigation to probe the effects of metal substitution on the charge transport properties of M-HITP, where M = Ni or Pt and HITP = 2,3,6,7,10,11-hexaiminotriphenylene. The results show that the identity of the M-HITP majority charge carrier can be changed without intentional introduction of electronically active dopants. We observe that the selection of the metal ion substantially affects charge transport. Using the known structure, Ni-HITP, we synthesized a new amorphous material, a-Pt-HITP, which although amorphous is nevertheless found to be porous upon desolvation. Importantly, this new material exhibits p-type charge transport behavior, unlike Ni-HITP, which displays n-type charge transport. These results demonstrate that both p- and n-type materials can be achieved within the same MOF topology through appropriate choice of the metal ion.more » « less
An official website of the United States government
