In this paper, we propose an efficient exponential integrator finite element method for solving a class of semilinear parabolic equations in rectangular domains. The proposed method first performs the spatial discretization of the model equation using the nite element approximation with continuous multilinear rectangular basis functions, and then takes the explicit exponential Runge-Kutta approach for time integration of the resulting semi-discrete system to produce fully-discrete numerical solution. Under certain regularity assumptions, error estimates measured in H1-norm are successfully derived for the proposed schemes with one and two RK stages. More remarkably, the mass and coefficient matrices of the proposed method can be simultaneously diagonalized with an orthogonal matrix, which provides a fast solution process based on tensor product spectral decomposition and fast Fourier transform. Various numerical experiments in two and three dimensions are also carried out to validate the theoretical results and demonstrate the excellent performance of the proposed method.
more »
« less
Variational data assimilation with finite-element discretization for second-order parabolic interface equation
Abstract In this paper, we propose and analyze a finite-element method of variational data assimilation for a second-order parabolic interface equation on a two-dimensional bounded domain. The Tikhonov regularization plays a key role in translating the data assimilation problem into an optimization problem. Then the existence, uniqueness and stability are analyzed for the solution of the optimization problem. We utilize the finite-element method for spatial discretization and backward Euler method for the temporal discretization. Then based on the Lagrange multiplier idea, we derive the optimality systems for both the continuous and the discrete data assimilation problems for the second-order parabolic interface equation. The convergence and the optimal error estimate are proved with the recovery of Galerkin orthogonality. Moreover, three iterative methods, which decouple the optimality system and significantly save computational cost, are developed to solve the discrete time evolution optimality system. Finally, numerical results are provided to validate the proposed method.
more »
« less
- Award ID(s):
- 2152609
- PAR ID:
- 10583441
- Publisher / Repository:
- Oxford Academic
- Date Published:
- Journal Name:
- IMA Journal of Numerical Analysis
- Volume:
- 45
- Issue:
- 1
- ISSN:
- 0272-4979
- Page Range / eLocation ID:
- 451 to 493
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We develop a new finite difference method for the wave equation in second order form. The finite difference operators satisfy a summation-by-parts (SBP) property. With boundary conditions and material interface conditions imposed weakly by the simultaneous-approximation-term (SAT) method, we derive energy estimates for the semi-discretization. In addition, error estimates are derived by the normal mode analysis. The proposed method is termed as energy-based because of its similarity with the energy-based discontinuous Galerkin method. When imposing the Dirichlet boundary condition and material interface conditions, the traditional SBP-SAT discretization uses a penalty term with a mesh-dependent parameter, which is not needed in our method. Furthermore, numerical dissipation can be added to the discretization through the boundary and interface conditions. We present numerical experiments that verify convergence and robustness of the proposed method.more » « less
-
Abstract In this work we introduce semi-implicit or implicit finite difference schemes for the continuity equation with a gradient flow structure. Examples of such equations include the linear Fokker–Planck equation and the Keller–Segel equations. The two proposed schemes are first-order accurate in time, explicitly solvable, and second-order and fourth-order accurate in space, which are obtained via finite difference implementation of the classical continuous finite element method. The fully discrete schemes are proved to be positivity preserving and energy dissipative: the second-order scheme can achieve so unconditionally while the fourth-order scheme only requires a mild time step and mesh size constraint. In particular, the fourth-order scheme is the first high order spatial discretization that can achieve both positivity and energy decay properties, which is suitable for long time simulation and to obtain accurate steady state solutions.more » « less
-
Summary In this paper, we propose and analyze two stabilized mixed finite element methods for the dual‐porosity‐Stokes model, which couples the free flow region and microfracture‐matrix system through four interface conditions on an interface. The first stabilized mixed finite element method is a coupled method in the traditional format. Based on the idea of partitioned time stepping, the four interface conditions, and the mass exchange terms in the dual‐porosity model, the second stabilized mixed finite element method is decoupled in two levels and allows a noniterative splitting of the coupled problem into three subproblems. Due to their superior conservation properties and convenience of the computation of flux, mixed finite element methods have been widely developed for different types of subsurface flow problems in porous media. For the mixed finite element methods developed in this article, no Lagrange multiplier is used, but an interface stabilization term with a penalty parameter is added in the temporal discretization. This stabilization term ensures the numerical stability of both the coupled and decoupled schemes. The stability and the convergence analysis are carried out for both the coupled and decoupled schemes. Three numerical experiments are provided to demonstrate the accuracy, efficiency, and applicability of the proposed methods.more » « less
-
Abstract In this article we study the stability of explicit finite difference discretization of advection–diffusion equations (ADE) with arbitrary order of accuracy in the context of method of lines. The analysis first focuses on the stability of the system of ordinary differential equations that is obtained by discretizing the ADE in space and then extends to fully discretized methods in combination with explicit Runge–Kutta methods. In particular, we prove that all stable semi‐discretization of the ADE leads to a conditionally stable fully discretized method as long as the time‐integrator is at least first‐order accurate, whereas high‐order spatial discretization of the advection equation cannot yield a stable method if the temporal order is too low. In the second half of the article, the analysis and the stability results are extended to a partially dissipative wave system, which serves as a model for common practice in many fluid mechanics applications that incorporate a viscous stress in the momentum equation but no heat dissipation in the energy equation. Finally, the major theoretical predictions are verified by numerical examples.more » « less
An official website of the United States government

