Experiments accessing extreme conditions at x-ray free electron lasers (XFELs) involve rapidly evolving conditions of temperature. Here, we report time-resolved, direct measurements of temperature using spectral streaked optical pyrometry of x-ray and optical laser-heated states at the High Energy Density instrument of the European XFEL. This collection of typical experiments, coupled with numerical models, outlines the reliability, precision, and meaning of time dependent temperature measurements using optical emission at XFEL sources. Dynamic temperatures above 1500 K are measured continuously from spectrally- and temporally-resolved thermal emission at 450–850 nm, with time resolution down to 10–100 ns for 1–200 μs streak camera windows, using single shot and integrated modes. Targets include zero-pressure foils free-standing in air and in vacuo, and high-pressure samples compressed in diamond anvil cell multi-layer targets. Radiation sources used are 20-fs hard x-ray laser pulses at 17.8 keV, in single pulses or 2.26 MHz pulse trains of up to 30 pulses, and 250-ns infrared laser single pulses. A range of further possibilities for optical measurements of visible light in x-ray laser experiments using streak optical spectroscopy are also explored, including for the study of x-ray induced optical fluorescence, which often appears as background in thermal radiation measurements. We establish several scenarios where combined emissions from multiple sources are observed and discuss their interpretation. Challenges posed by using x-ray lasers as non-invasive probes of the sample state are addressed.
more »
« less
Femtosecond temperature measurements of laser-shocked copper deduced from the intensity of the x-ray thermal diffuse scattering
We present 50-fs, single-shot measurements of the x-ray thermal diffuse scattering (TDS) from copper foils that have been shocked via nanosecond laser ablation up to pressures above ∼135 GPa. We hence deduce the x-ray Debye–Waller factor, providing a temperature measurement. The targets were laser-shocked with the DiPOLE 100-X laser at the High Energy Density endstation of the European X-ray Free-Electron Laser. Single x-ray pulses, with a photon energy of 18 keV, were scattered from the samples and recorded on Varex detectors. Despite the targets being highly textured (as evinced by large variations in the elastic scattering) and with such texture changing upon compression, the absolute intensity of the azimuthally averaged inelastic TDS between the Bragg peaks is largely insensitive to these changes, and allowing for both Compton scattering and the low-level scattering from a sacrificial ablator layer provides a reliable measurement of T/ΘD2, where ΘD is the Debye temperature. We compare our results with the predictions of the SESAME 3336 and LEOS 290 equations of state for copper and find good agreement within experimental errors. We, thus, demonstrate that single-shot temperature measurements of dynamically compressed materials can be made via thermal diffuse scattering of XFEL radiation.
more »
« less
- Award ID(s):
- 2020249
- PAR ID:
- 10583684
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- Journal of Applied Physics
- Volume:
- 137
- Issue:
- 15
- ISSN:
- 0021-8979
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Single crystals of the quaternary chalcogenide BaCuGdTe 3 were obtained by direct reaction of elements allowing for a complete investigation of the intrinsic electrical and thermal properties of this previously uninvestigated material. The structure was investigated by high-resolution single-crystal synchrotron X-ray diffraction, revealing an orthorhombic crystal structure with the space group Cmcm. Although recently identified as a semiconductor suitable for thermoelectric applications from theoretical analyses, our electrical resistivity and Seebeck coefficient measurements show metallic conduction, the latter revealing strong phonon-drag. Temperature dependent hole mobility reveals dominant acoustic phonon scattering. Heat capacity data reveal a Debye temperature of 183 K and a very high density of states at the Fermi level, the latter confirming the metallic nature of this composition. Thermal conductivity is relatively high with Umklapp processes dominating thermal transport above the Debye temperature. The findings in this work lay the foundation for a more detailed understanding of the physical properties of this and similar multinary chalcogenide materials, and is part of the continuing effort in investigating quaternary chalcogenide materials and their suitability for use in technological applications.more » « less
-
To increase the storage capacity of hard disk drives, Heat-Assisted Magnetic Recording (HAMR) takes advantage of laser heating to temporarily reduce the coercivity of recording media, enabling the writing of very small data bits on materials with high thermal stability. One key challenge in implementing HAMR is effective thermal management, which requires reliable determination of the thermal properties of HAMR materials over their range of operating temperature. This work reports the thermal properties of dielectric (amorphous silica, amorphous alumina, and AlN), metallic (gold and copper), and magnetic alloy (NiFe and CoFe) thin films used in HAMR heads from room temperature to 500 K measured with time-domain thermoreflectance. Our results show that the thermal conductivities of amorphous silica and alumina films increase with temperature, following the typical trends for amorphous materials. The polycrystalline AlN film exhibits weak thermal anisotropy, and its in-plane and through-plane thermal conductivities decrease with temperature. The measured thermal conductivities of AlN are significantly lower than that which would be present in single-crystal bulk material, and this is attributed to enhanced phonon-boundary scattering and phonon-defect scattering. The gold, copper, NiFe, and CoFe films show little temperature dependence in their thermal conductivities over the same temperature range. The measured thermal conductivities of gold and copper films are explained by the diffuse electron-boundary scattering using an empirical model.more » « less
-
We have designed a new filter pack array to measure angular variations in x-ray spectra during a single shot. The filter pack was composed of repeating identical columns of aluminum and copper filters of varying thicknesses. These columns were located at different positions to measure the spectrum at each corresponding angle. This array was utilized in an experiment to measure the energy evolution of betatron x rays in a laser wakefield accelerator by curving the wakefield with a transverse density gradient, streaking the x rays across the array in front of an x-ray charge-coupled device (CCD) camera. After subtracting the background and “flattening” the image to remove spatial nonuniformities, a critical energy was calculated for each position that produced the best agreement with the measured signal. There was a clear change in critical energy with angle, shedding light on the dynamics of the electrons that traveled through the accelerator. These angles correspond to distinct emission times, covering a timescale of tens of picoseconds. The filter pack was capable of recovering these angular details without the impact of errors introduced by shot-to-shot variability.more » « less
-
We investigate the anisotropic thermal expansion behavior of a co- crystalline system composed of 4,40-azopyridine and trimesic acid (TMA-azo). Using variable-temperature single-crystal X-ray diffrac- tion (SC-XRD), low-frequency Raman spectroscopy, and terahertz time-domain spectroscopy (THz-TDS), we observe significant temperature-induced shifting and broadening of the vibrational absorption features, indicating changes in the intermolecular potential. Our findings reveal that thermal expansion is driven by anharmonic interactions and the potential energy topography, rather than increased molecular dynamics. Density functional the- ory (DFT) simulations support these results, highlighting significant softening of the potential energy surface (PES) with temperature. This comprehensive approach offers valuable insights into the relationship between structural dynamics and thermal properties, providing a robust framework for designing materials with tailored thermal expansion characteristics.more » « less
An official website of the United States government
