Abstract Stretchable supercapacitors (SCs) have attracted significant attention in developing power‐independent stretchable electronic systems due to their intrinsic energy storage function and unique mechanical properties. Most current SCs are generally limited by their low stretchability, complicated fabrication process, and insufficient performance and robustness. This study presents a facile method to fabricate arbitrary‐shaped stretchable electrodes via 4D printing of conductive composite from reduced graphene oxide, carbon nanotube, and poly(3,4‐ethylenedioxythiophene) polystyrene sulfonate. The electrode patterns of an arbitrary shape can be deposited onto prestretched substrates by aerosol‐jet printing, then self‐organized origami (ridge) patterns are generated after releasing the substrates from holding stretchers due to the mismatched strains. The stretchable electrodes demonstrate superior mechanical robustness and stretchability without sacrificing its outstanding electrochemical performance. The symmetric SC prototype possesses a gravimetric capacitance of ≈21.7 F g−1at a current density of 0.5 A g−1and a capacitance retention of ≈85.8% from 0.5 to 5 A g−1. A SC array with arbitrary‐shaped electrodes is also fabricated and connected in series to power light‐emitting diode patterns for large‐scale applications. The proposed method paves avenues for scalable manufacturing of future energy‐storage devices with controlled extensibility and high electrochemical performance. 
                        more » 
                        « less   
                    
                            
                            Transforming scalable synthesis of graphene aerosol gel material toward highly flexible and wide-temperature tolerant printed micro-supercapacitors
                        
                    
    
            The ever-growing demand for portable, bendable, twistable, and wearable microelectronics operating in a wide temperature range has stimulated an immense interest in the development of solid-state flexible energy storage devices using scalable fabrication technology. Herein, we developed additively manufactured graphene aerosol gel-based all-solid-state micro-supercapacitors (MSCs) via inkjet printing with functioning temperature in the range from −15 to +70 °C and exhibiting a super-stable and reliable electrochemical performance using interdigitated finger electrodes and PVA/H3PO4 solid-state electrolyte. The graphene aerosol gel was obtained using a scalable single step synthesis method from a gas phase precursor using a detonation process, producing a nanoscale shell type structure. The fabricated graphene aerosol gel-based solid-state MSC achieved a volumetric capacitance of 376.63 mF cm−3 (areal capacitance of 76.23 μF cm−2) at a constant current of 0.25 μA and demonstrated exceptional cyclic stability (∼99.6% of capacitance retention) over 10 000 cycles. To exploit the mechanical strength of the as-fabricated graphene aerosol gel-based solid-state MSC, its supercapacitive performance was scrutinized under various bending and twisting angles and the results showed excellent mechanical flexibility. Furthermore, to study the electrochemical performance of the as-fabricated graphene aerosol gel solid-state MSC in stringent surroundings, a broad temperature dependent supercapacitive analysis was performed as stated above. The electrochemical results of the as-fabricated graphene aerosol gel based all-solid-state MSC exhibit a highly potential route to develop scalable and authentic future miniaturized energy storage devices for IoT based smart electronic appliances. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1935676
- PAR ID:
- 10583939
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- APL Energy
- Volume:
- 2
- Issue:
- 1
- ISSN:
- 2770-9000
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Lightweight energy storage devices are essential for developing compact wearable and distributed electronics, and additive manufacturing offers a scalable, low‐cost approach to fabricating such devices with complex geometries. However, additive manufacturing of high‐performance, on‐demand energy storage devices remains challenging due to the need for stable, multifunctional nanomaterial inks. Herein, the development of 2‐dimensional (2D) titanium carbide (Ti3C2TxMXene) ink that is compatible with aerosol jet printing for energy storage applications is demonstrated. The developed MXene ink demonstrates long‐term chemical and physical stability, ensuring consistent printability and achieving high‐resolution prints (≈45 µm width lines) with minimal overspray. The high‐resolution aerosol‐jet printed MXene supercapacitor achieves an areal capacitance of 122 mF cm−2and a volumetric capacitance of 611 F cm−3, placing them among the highest‐performing printed supercapacitors reported to date. These findings highlight the potential of aerosol jet printing with MXene inks for on‐demand, scalable, and cost‐effective fabrication of printed electronic and electrochemical devices.more » « less
- 
            Supercapacitor energy storage devices are well suited to meet the rigorous demands of future portable consumer electronics (PCEs) due to their high energy and power densities (i.e., longer battery-life and rapid charging, respectively) and superior operational lifetimes (10 times greater than lithium-ion batteries). To date, research efforts have been narrowly focused on improving the specific capacitance of these materials; however, emerging technologies are increasingly demanding competitive performance with regards to other criteria, including scalability of fabrication and electrochemical stability. In this regard, we developed a polyaniline (PANI) derivative that contains a carbazole unit copolymerized with 2,5-dimethyl-p-phenylenediamine (Cbz-PANI-1) and determined its optoelectronic properties, electrical conductivity, processability, and electrochemical stability. Importantly, the polymer exhibits good solubility in various solvents, which enables the use of scalable spray-coating and drop-casting methods to fabricate electrodes. Cbz-PANI-1 was used to fabricate electrodes for supercapacitor devices that exhibits a maximum areal capacitance of 64.8 mF cm–2 and specific capacitance of 319 F g–1 at a current density of 0.2 mA cm–2. Moreover, the electrode demonstrates excellent cyclic stability (≈ 83% of capacitance retention) over 1000 CV cycles. Additionally, we demonstrate the charge storage performance of Cbz-PANI-1 in a symmetrical supercapacitor device, which also exhibits excellent cyclic stability (≈ 91% of capacitance retention) over 1000 charge–discharge cycles.more » « less
- 
            Abstract Graphene oxide (GO)‐based all‐solid‐state supercapacitors (GO‐A3Ss) are superior over liquid electrolyte‐based supercapacitors and capable of being integrated on a single chip in various geometry shapes for the use of future smart wearable electronics field as a fast energy storage device, but their capacitance need to be improved. Here, a new approach has been developed for enhancing the capacitive capability of the supercapacitors through molecular dynamics simulations with the first‐principle input. A theoretical model of charge storage is developed to understand the unique capacitive enhancement mechanism and to predict the capacitance of the GO‐A3Ss, which agrees well with the experimental observations. A novel supercapacitor with GO and reduced graphene oxide (rGO) alternatively layered structures is designed based on the model, and its energy density is the highest among conventional supercapacitors using liquid electrolytes and all‐solid‐state supercapacitors using aerogels or hydrogels as the solid‐state electrolyte. Based on the predictions, two new types of high‐performance GO/rGO multilayered capacitors are proposed to meet different practical applications. The results of this work provide an approach for the design of high‐performance all‐solid‐state supercapacitors based on GO and rGO materials.more » « less
- 
            Recently, graphene fibers derived from wet-spinning of graphene oxide (GO) dispersions have emerged as viable electrodes for fiber-shaped supercapacitors (FSCs) and/or batteries, wherein large surface area, high electrical conductivity, and sufficient mechanical strength/toughness are desired. However, for most fiber electrodes reported so far, compromises have to be made between energy-storage capacity and mechanical/electrical performance, whereas a graphene fiber with high capacity and sufficient toughness for direct machine weaving or knitting is yet to be developed. Inspired by the alum mordant used for natural dyes in the traditional textile dyeing industry, our research group has synthesized wet-spun GO fibers and coagulated them with different multivalent cations ( e.g. Ca 2+ , Fe 3+ , and Al 3+ ), where dramatically different fiber morphologies and properties have been observed. The first principles density functional theory has been further employed to explain the observed disparities via cation–GO binding energy calculation. When assembled into solid-state FSCs, Al 3+ -based reduced GO (rGO) fibers offer excellent stability against bending, and a specific capacitance of 148.5 mF cm −2 at 40 mV s −1 , 1.4, 4.8, and 6.8 times higher than that of the rGO fibers based on other three coagulation systems (Fe 3+ , Ca 2+ and acetic acid), respectively. The volumetric energy density of the Al 3+ -based FSC is up to 13.26 mW h cm −3 , while a high power density of 250.87 mW cm −3 is maintained.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
