Abstract Long-term climate history can influence rates of soil carbon cycling but the microbial traits underlying these legacy effects are not well understood. Legacies may result if historical climate differences alter the traits of soil microbial communities, particularly those associated with carbon cycling and stress tolerance. However, it is also possible that contemporary conditions can overcome the influence of historical climate, particularly under extreme conditions. Using shotgun metagenomics, we assessed the composition of soil microbial functional genes across a mean annual precipitation gradient that previously showed evidence of strong climate legacies in soil carbon flux and extracellular enzyme activity. Sampling coincided with recovery from a regional, multi-year severe drought, allowing us to document how the strength of climate legacies varied with contemporary conditions. We found increased investment in genes associated with resource cycling with historically higher precipitation across the gradient, particularly in traits related to resource transport and complex carbon degradation. This legacy effect was strongest in seasons with the lowest soil moisture, suggesting that contemporary conditions—particularly, resource stress under water limitation—influences the strength of legacy effects. In contrast, investment in stress tolerance did not vary with historical precipitation, likely due to frequent periodic drought throughout the gradient. Differences in the relative abundance of functional genes explained over half of variation in microbial functional capacity—potential enzyme activity—more so than historical precipitation or current moisture conditions. Together, these results suggest that long-term climate can alter the functional potential of soil microbial communities, leading to legacies in carbon cycling.
more »
« less
Data from: Drought increases microbial allocation to stress tolerance but with few tradeoffs among community-level traits
Climate change will increase soil drying, altering microbial communities via increasing water stress and decreasing resource availability. The responses of these microbial communities to changing environments is likely governed by physiological tradeoffs between high yield, resource acquisition, and stress tolerance (Y-A-S framework). We leveraged a unique field experiment that manipulates both drought and carbon availability across two years and three land uses, and we used both metagenomic and bioassay indicators of the three microbial community traits to test the following hypotheses: 1. Drought increases microbial allocation to stress tolerance functions, at the expense of growth and resource acquisition. 2. Because microbes are resource-limited under drought, increased carbon will enable greater expression of stress tolerance. 3. All three key life history traits described in the YAS framework will trade off, especially when resources are limited. Drought did increase microbial physiological investment in stress tolerance (measured via trehalose production), but we saw few other changes in microbial communities under drought. Carbon addition increased resource acquisition (measured via enzyme activity and resource acquisition gene abundance) and stress tolerance (trehalose assay), but did so in both drought and average rainfall environments. We found no evidence of trait tradeoffs, as we found no significant negative correlations between traits (measured via bioassay and metagenomics). In summary, we found C addition, and to a lesser extent, drought, both altered microbial community function and functional genes. However, resources did not alter drought response in a way that was consistent with theory of life history tradeoffs.
more »
« less
- Award ID(s):
- 2224712
- PAR ID:
- 10584029
- Publisher / Repository:
- Environmental Data Initiative
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Fungi are important decomposers in terrestrial ecosystems, so their responses to climate change might influence carbon (C) and nitrogen (N) dynamics. We investigated whether growth and activity of fungi under drought conditions were structured by trade-offs among traits in 15 fungal isolates from a Mediterranean Southern California grassland. We inoculated fungi onto sterilized litter that was incubated at three moisture levels (4, 27, and 50% water holding capacity, WHC). For each isolate, we characterized traits that described three potential lifestyles within the newly proposed “YAS” framework: growth yield, resource acquisition, and stress tolerance. Specifically, we measured fungal hyphal length per unit litter decomposition for growth yield; the potential activities of the extracellular enzymes cellobiohydrolase (CBH), β -glucosidase (BG), β -xylosidase (BX), and N-acetyl- β - D -glucosaminidase (NAG) for resource acquisition; and ability to grow in drought vs. higher moisture levels for drought stress tolerance. Although, we had hypothesized that evolutionary and physiological trade-offs would elicit negative relationships among traits, we found no supporting evidence for this hypothesis. Across isolates, growth yield, drought stress tolerance, and extracellular enzyme activities were not significantly related to each other. Thus, it is possible that drought-induced shifts in fungal community composition may not necessarily lead to changes in fungal biomass or decomposer ability in this arid grassland.more » « less
-
If we better understand how fungal responses to global change are governed by their traits, we can improve predictions of fungal community composition and ecosystem function. Specifically, we can examine trade-offs among traits, in which the allocation of finite resources toward one trait reduces the investment in others. We hypothesized that trade-offs among fungal traits relating to rapid growth, resource capture, and stress tolerance sort fungal species into discrete life history strategies. We used the Biolog Filamentous Fungi database to calculate maximum growth rates of 37 fungal species and then compared them to their functional traits from the fun fun database. In partial support of our hypothesis, maximum growth rate displayed a negative relationship with traits related to resource capture. Moreover, maximum growth rate displayed a positive relationship with amino acid permease, forming a putative Fast Growth life history strategy. A second putative life history strategy is characterized by a positive relationship between extracellular enzymes, including cellobiohydrolase 6, cellobiohydrolase 7, crystalline cellulase AA9, and lignin peroxidase. These extracellular enzymes were negatively related to chitosanase 8, an enzyme that can break down a derivative of chitin. Chitosanase 8 displayed a positive relationship with many traits that were hypothesized to cluster separately, forming a putative Blended life history strategy characterized by certain resource capture, fast growth, and stress tolerance traits. These trait relationships complement previously explored microbial trait frameworks, such as the Competitor-Stress Tolerator-Ruderal and the Yield-Resource Acquisition-Stress Tolerance schemes.more » « less
-
Abstract Soil microbial traits drive ecosystem functions, which can explain the positive correlation between microbial functional diversity and ecosystem function. However, microbial adaptation to climate change related warming stress can shift microbial traits with direct implications for soil carbon cycling. Here, we investigated how long-term warming affects the relationship between microbial trait diversity and ecosystem function. Soils were sampled after 24 years of +5°C warming alongside unheated control soils from the Harvard Forest Long-Term Ecological Research site. Ecosystem function was estimated from six different enzyme activities and microbial biomass. Functional diversity was calculated from metatranscriptomics sequencing, where reads were assigned to yield, acquisition, or stress trait categories. We found that in organic horizon soils, warming decreased the richness of acquisition-related traits. In the mineral soils, we observed that heated soils exhibited a negative relationship with the richness of acquisition-related traits. These results suggest that microbial communities exposed to long-term warming are shifting away from a resource acquisition life history strategy.more » « less
-
Abstract Plant populations are limited by resource availability and exhibit physiological trade‐offs in resource acquisition strategies. These trade‐offs may constrain the ability of populations to exhibit fast growth rates under water limitation and high cover of neighbours. However, traits that confer drought tolerance may also confer resistance to competition. It remains unclear how fitness responses to these abiotic conditions and biotic interactions combine to structure grassland communities and how this relationship may change along a gradient of water availability.To address these knowledge gaps, we estimated the low‐density growth rates of populations in drought conditions with low neighbour cover and in ambient conditions with average neighbour cover for 82 species in six grassland communities across the Central Plains and Southwestern United States. We assessed the relationship between population tolerance to drought and resistance to competition and determined if this relationship was consistent across a precipitation gradient. We also tested whether population growth rates could be predicted using plant functional traits.Across six sites, we observed a positive correlation between low‐density population growth rates in drought and in the presence of interspecific neighbours. This positive relationship was particularly strong in the grasslands of the northern Great Plains but weak in the most xeric grasslands. High leaf dry matter content and a low (more negative) leaf turgor loss point were associated with high population growth rates in drought and with neighbours in most grassland communities.Synthesis: A better understanding of how both biotic and abiotic factors impact population fitness provides valuable insights into how grasslands will respond to extreme drought. Our results advance plant strategy theory by suggesting that drought tolerance increases population resistance to interspecific competition in grassland communities. However, this relationship is not evident in the driest grasslands, where above‐ground competition is likely less important. Leaf dry matter content and turgor loss point may help predict which populations will establish and persist based on local water availability and neighbour cover, and these predictions can be used to guide the conservation and restoration of biodiversity in grasslands.more » « less
An official website of the United States government
