Simulating the time evolution of a Hamiltonian system on a classical computer is hard—The computational power required to even describe a quantum system scales exponentially with the number of its constituents, let alone integrate its equations of motion. Hamiltonian simulation on a quantum machine is a possible solution to this challenge—Assuming that a quantum system composing of spin-½ particles can be manipulated at will, then it is tenable to engineer the interaction between those particles according to the one that is to be simulated, and thus predict the value of physical quantities by simply performing the appropriate measurements on the system. Establishing a linkage between the unitary operators described mathematically as a logic solution and the unitary operators recognizable as quantum circuits for execution, is therefore essential for algorithm design and circuit implementation. Most current techniques are fallible because of truncation errors or the stagnation at local solutions. This work offers an innovative avenue by tackling the Cartan decomposition with the notion of Lax dynamics. Within the integration errors that is controllable, this approach gives rise to a genuine unitary synthesis that not only is numerically feasible, but also can be utilized to gauge the quality of results produced by other means, and extend the knowledge to a wide range of applications. This paper aims at establishing the theoretic and algorithmic foundations by exploiting the geometric properties of Hamiltonian subalgebras and describing a common mechanism for deriving the Lax dynamics.
more »
« less
Circumventing traps in analog quantum machine learning algorithms through co-design
Quantum machine learning algorithms promise to deliver near-term, applicable quantum computation on noisy, intermediate-scale systems. While most of these algorithms leverage quantum circuits for generic applications, a recent set of proposals, called analog quantum machine learning (AQML) algorithms, breaks away from circuit-based abstractions and favors leveraging the natural dynamics of quantum systems for computation, promising to be noise-resilient and suited for specific applications such as quantum simulation. Recent AQML studies have called for determining best ansatz selection practices and whether AQML algorithms have trap-free landscapes based on theory from quantum optimal control (QOC). We address this call by systematically studying AQML landscapes on two models: those admitting black-boxed expressivity and those tailored to simulating a specific unitary evolution. Numerically, the first kind exhibits local traps in their landscapes, while the second kind is trap-free. However, both kinds violate QOC theory’s key assumptions for guaranteeing trap-free landscapes. We propose a methodology to co-design AQML algorithms for unitary evolution simulation using the ansatz’s Magnus expansion. Our methodology guarantees the algorithm has an amenable dynamical Lie algebra with independently tunable terms. We show favorable convergence in simulating dynamics with applications to metrology and quantum chemistry. We conclude that such co-design is necessary to ensure the applicability of AQML algorithms.
more »
« less
- PAR ID:
- 10584232
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- APL Quantum
- Volume:
- 1
- Issue:
- 4
- ISSN:
- 2835-0103
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Designing quantum algorithms for simulating quantum systems has seen enormous progress, yet few studies have been done to develop quantum algorithms for open quantum dynamics despite its importance in modeling the system-environment interaction found in most realistic physical models. In this work we propose and demonstrate a general quantum algorithm to evolve open quantum dynamics on quantum computing devices. The Kraus operators governing the time evolution can be converted into unitary matrices with minimal dilation guaranteed by the Sz.-Nagy theorem. This allows the evolution of the initial state through unitary quantum gates, while using significantly less resource than required by the conventional Stinespring dilation. We demonstrate the algorithm on an amplitude damping channel using the IBM Qiskit quantum simulator and the IBM Q 5 Tenerife quantum device. The proposed algorithm does not require particular models of dynamics or decomposition of the quantum channel, and thus can be easily generalized to other open quantum dynamical models.more » « less
-
Abstract Quantum neuromorphic computing (QNC) is a sub-field of quantum machine learning (QML) that capitalizes on inherent system dynamics. As a result, QNC can run on contemporary, noisy quantum hardware and is poised to realize challenging algorithms in the near term. One key issue in QNC is the characterization of the requisite dynamics for ensuring expressive quantum neuromorphic computation. We address this issue by proposing a building block for QNC architectures, what we call quantum perceptrons (QPs). Our proposed QPs compute based on the analog dynamics of interacting qubits with tunable coupling constants. We show that QPs are, with restricted resources, a quantum equivalent to the classical perceptron, a simple mathematical model for a neuron that is the building block of various machine learning architectures. \framing{Moreover, we show that QPs are theoretically capable of producing any unitary operation.} Thus, QPs are computationally more expressive than their classical counterparts. As a result, QNC architectures built our of QPs are, theoretically, universal. We introduce a technique for mitigating barren plateaus in QPs called entanglement thinning. We demonstrate QPs' effectiveness by applying them to numerous QML problems, including calculating the inner products between quantum states, entanglement witnessing, and quantum metrology. Finally, we discuss potential implementations of QPs and how they can be used to build more complex QNC architectures.more » « less
-
null (Ed.)Due to the unreliability and limited capacity of existing quantum computer prototypes, quantum circuit simulation continues to be a vital tool for validating next generation quantum computers and for studying variational quantum algorithms, which are among the leading candidates for useful quantum computation. Existing quantum circuit simulators do not address the common traits of variational algorithms, namely: 1) their ability to work with noisy qubits and operations, 2) their repeated execution of the same circuits but with different parameters, and 3) the fact that they sample from circuit final wavefunctions to drive a classical optimization routine. We present a quantum circuit simulation toolchain based on logical abstractions targeted for simulating variational algorithms. Our proposed toolchain encodes quantum amplitudes and noise probabilities in a probabilistic graphical model, and it compiles the circuits to logical formulas that support efficient repeated simulation of and sampling from quantum circuits for different parameters. Compared to state-of-the-art state vector and density matrix quantum circuit simulators, our simulation approach offers greater performance when sampling from noisy circuits with at least eight to 20 qubits and with around 12 operations on each qubit, making the approach ideal for simulating near-term variational quantum algorithms. And for simulating noise-free shallow quantum circuits with 32 qubits, our simulation approach offers a 66X reduction in sampling cost versus quantum circuit simulation techniques based on tensor network contraction.more » « less
-
Abstract In a recent paper, we defined a type of weighted unitary design called a twisted unitary 1-group and showed that such a design automatically induced error-detecting quantum codes. We also showed that twisted unitary 1-groups correspond to irreducible products of characters thereby reducing the problem of code-finding to a computation in the character theory of finite groups. Using a combination of GAP computations and results from the mathematics literature on irreducible products of characters, we identify many new non-trivial quantum codes with unusual transversal gates. Transversal gates are of significant interest to the quantum information community for their central role in fault tolerant quantum computing. Most unitary$$\text {t}$$ -designs have never been realized as the transversal gate group of a quantum code. We, for the first time, find nontrivial quantum codes realizing nearly every finite group which is a unitary 2-design or better as the transversal gate group of some error-detecting quantum code.more » « less
An official website of the United States government
