Abstract Although much is known about the environmental conditions necessary for supercell tornadogenesis, the near-ground vorticity dynamics during the tornadogenesis process itself are still somewhat poorly understood. For instance, seemingly contradicting mechanisms responsible for large near-ground vertical vorticity can be found in the literature. Broadly, these mechanisms can be sorted into two classes, one being based on upward tilting of mainly baroclinically produced horizontal vorticity in descending air (here called the downdraft mechanism), while in the other the horizontal vorticity vector is abruptly tilted upward practically at the surface by a strong updraft gradient (referred to as the in-and-up mechanism). In this study, full-physics supercell simulations and highly idealized simulations show that both mechanisms play important roles during tornadogenesis. Pretornadic vertical vorticity maxima are generated via the downdraft mechanism, while the dynamics of a fully developed vortex are dominated by the in-and-up mechanism. Consequently, a transition between the two mechanisms occurs during tornadogenesis. This transition is a result of axisymmetrization of the pretornadic vortex patch and intensification via vertical stretching. These processes facilitate the development of the corner flow, which enables production of vertical vorticity by upward tilting of horizontal vorticity practically at the surface, i.e., the in-and-up mechanism. The transition of mechanisms found here suggests that early stages of tornado formation rely on the downdraft mechanism, which is often limited to a small vertical component of baroclinically generated vorticity. Subsequently, a larger supply of horizontal vorticity (produced baroclinically or via surface drag, or even imported from the environment) may be utilized, which marks a considerable change in the vortex dynamics.
more »
« less
The Development of Simulated Dust-Devil-Like Vortices
Abstract In this study, the cause of rotation in simulated dust-devil-like vortices is investigated. The analysis uses a numerical simulation of an initially resting, dry, atmosphere, in which uniform surface heating leads to the development of a growing convective boundary layer (CBL). As soon as convective mixing sets in, regions of weak vertical vorticity develop at the lowest model level. Using forward trajectories, this vorticity is shown to originate from horizontal baroclinic production and simultaneous reorientation into the vertical within the descending branches of the convective cells. The requirement for vertical vorticity production in the downdraft cells is shown to be a nonaxisymmetric horizontal footprint of the downdraft regions. The resulting vertical vorticity is not initially associated with rotation. However, as the CBL matures, like-signed vortex patches merge, the vertical vorticity magnitude increases due to stretching, and deformation in the vortex patch decreases, leading to the development of vortices. The ultimate origin of the vortices is thus initially horizontal vorticity that has been produced baroclinically and that has subsequently been reoriented into the vertical in sinking air. Significance StatementDust devils are concentrated vortices consisting of rapidly rising buoyant air, which may pose a risk to small aircraft and light structures on the ground. Although these vortices are a common occurrence in convective boundary layers, the origin of the vorticity within these vortices has not yet been fully established. The present study uses a numerical simulation of an evolving convective boundary layer and analyzes air parcel trajectories to identify the origin of vertical vorticity at the surface during dust-devil formation. The work contributes an answer to the long-standing question of what causes dust devils to spin.
more »
« less
- Award ID(s):
- 2152537
- PAR ID:
- 10584611
- Publisher / Repository:
- AMS
- Date Published:
- Journal Name:
- Journal of the Atmospheric Sciences
- Volume:
- 81
- Issue:
- 11
- ISSN:
- 0022-4928
- Page Range / eLocation ID:
- 1883 to 1899
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Despite their structural differences, supercells and quasi-linear convective systems (QLCS) are both capable of producing severe weather, including tornadoes. Previous research has highlighted multiple potential mechanisms by which horizontal vorticity may be reoriented into the vertical at low levels, but it is not clear in which situation what mechanism dominates. In this study, we use the CM1 model to simulate three different storm modes, each of which developed relatively large near-surface vertical vorticity. Using forward-integrated parcel trajectories, we analyze vorticity budgets and demonstrate that there seems to be a common mechanism for maintaining the near-surface vortices across storm structures. The parcels do not acquire vertical vorticity until they reach the base of the vortices. The vertical vorticity results from vigorous upward tilting and simultaneous vertical stretching. While the parcels analyzed in our simulations do have a history of descent, they do not acquire appreciable vertical vorticity during their descent. Rather, during the analysis period relatively large horizontal vorticity develops as a result of horizontal stretching by the horizontal wind, such that it can be effectively tilted into the vertical.more » « less
-
Abstract A simulation of a supercell storm produced for a prior study on tornado predictability is reanalyzed for the purpose of examining the fine-scale details of tornadogenesis. It is found that the formation of a tornado-like vortex in the simulation differs from how such vortices have been understood to form in previous numerical simulations. The main difference between the present simulation and past ones is the inclusion of a turbulent boundary layer in the storm’s environment in the present case, whereas prior simulations have used a laminar boundary layer. The turbulent environment contains significant near-surface vertical vorticity (ζ > 0.03 s−1at z= 7.5 m), organized in the form of longitudinal streaks aligned with the southerly ground-relative winds. The ζ streaks are associated with corrugations in the vertical plane in the predominantly horizontal, westward-pointing environmental vortex lines; the vortex-line corrugations are produced by the vertical drafts associated with coherent turbulent structures aligned with the aforementioned southerly ground-relative winds (longitudinal coherent structures in the surface layer such as these are well known to the boundary layer and turbulence communities). The ζ streaks serve as focal points for tornadogenesis, and may actually facilitate tornadogenesis, given how near-surface ζ in the environment can rapidly amplify when subjected to the strong, persistent convergence beneath a supercell updraft. Significance StatementIn high-resolution computer simulations of supercell storms that include a more realistic, turbulent environment, the means by which tornado-like vortices form differs from the mechanism identified in prior simulations using a less realistic, laminar environment. One possibility is that prior simulations develop intense vortices for the wrong reasons. Another possibility could be that tornadoes form in a wide range of ways in the real atmosphere, even within supercell storms that appear to be similar, and increasingly realistic computer simulations are finally now capturing that diversity.more » « less
-
null (Ed.)Abstract Tropical cyclogenesis (TCG) is a multiscale process that involves interactions between large-scale circulation and small-scale convection. A near-global aquaplanet cloud-resolving model (NGAqua) with 4-km horizontal grid spacing that produces tropical cyclones (TCs) is used to investigate TCG and its predictability. This study analyzes an ensemble of three 20-day NGAqua simulations, with initial white-noise perturbations of low-level humidity. TCs develop spontaneously from the northern edge of the intertropical convergence zone (ITCZ), where large-scale flows and tropical convection provide necessary conditions for barotropic instability. Zonal bands of positive low-level absolute vorticity organize into cyclonic vortices, some of which develop into TCs. A new algorithm is developed to track the cyclonic vortices. A vortex-following framework analysis of the low-level vorticity budget shows that vertical stretching of absolute vorticity due to convective heating contributes positively to the vorticity spinup of the TCs. A case study and composite analyses suggest that sufficient humidity is key for convective development. TCG in these three NGAqua simulations undergoes the same series of interactions. The locations of cyclonic vortices are broadly predetermined by planetary-scale circulation and humidity patterns associated with ITCZ breakdown, which are predictable up to 10 days. Whether and when the cyclonic vortices become TCs depend on the somewhat more random feedback between convection and vorticity.more » « less
-
Abstract This case study analyzes the 17 May 2019 cyclic, tornadic supercell from southwest Nebraska observed by the Targeted Observation by Radars and UAS of Supercells (TORUS) field experiment. Specifically, 12 multi-Doppler wind syntheses are generated over a 96-min period from 2301 UTC 17 May to 0037 UTC 18 May using two P-3 airborne radars and the ground-based NOXP research radar. Synthesized winds and reflectivity are assimilated into a diabatic Lagrangian analysis for the retrieval of thermodynamic data. The 4D wind fields are found to correlate well with observed tornadic and nontornadic periods, and several storm-scale features related to low-level mesocyclone (LLM) and near-ground rotation processes are documented. This includes vortex line arches that are a defining feature during the first EF2 tornado, followed by an occlusion process and reorganization period. During the most active tornadic period, backward trajectories reveal both inflow parcels and forward-flank parcels participate in the core of the 0–1-km rotation. While tilting of streamwise vorticity into vertical vorticity and subsequent powerful vertical stretching occurs for both inflow and forward-flank parcels, the solenoidal generation of streamwise vorticity is dominant with the latter. This resembles streamwise vorticity currents found within numerical simulations. Last, an intense left-flank convergence boundary develops coincident with the intensification of storm-relative inflow winds, with its formation and dissipation correlated with the final tornado. The 96-min analysis period with 4D kinematic and thermodynamic data makes this study one of the most detailed supercell case studies presented in the literature. Significance StatementA detailed analysis of a supercell that produced nine tornadoes within a 96-min period is presented. The supercell was observed by five radars, which are used to obtain information about the 3D wind, temperature, and moisture fields. Although computer simulations can provide detailed looks into supercell processes, collecting and analyzing observed supercell data of this quality is challenging and rare. We identify features within the supercell that are correlated with periods of strong and weak tornado production. Additionally, we identify the source region of air that is associated with low-level rotation in the supercell and comment on the importance of temperature gradients observed within the supercell, comparing these results to what has been found in simulations.more » « less
An official website of the United States government

