skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Safe and Reliable Training of Learning-Based Aerospace Controllers
In recent years, deep reinforcement learning (DRL) approaches have generated highly successful controllers for a myriad of complex domains. However, the opaque nature of these models limits their applicability in aerospace systems and sasfety-critical domains, in which a single mistake can have dire consequences. In this paper, we present novel advancements in both the training and verification of DRL controllers, which can help ensure their safe behavior. We showcase a design-for-verification approach utilizing k-induction and demonstrate its use in verifying liveness properties. In addition, we also give a brief overview of neural Lyapunov Barrier certificates and summarize their capabilities on a case study. Finally, we describe several other novel reachability-based approaches which, despite failing to provide guarantees of interest, could be effective for verification of other DRL systems, and could be of further interest to the community.  more » « less
Award ID(s):
2211505
PAR ID:
10584627
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3503-4961-0
Page Range / eLocation ID:
1 to 10
Subject(s) / Keyword(s):
Training Space vehicles Neural networks Aerospace electronics Deep reinforcement learning Control systems Aerospace safety Reliability Reachability analysis Artificial intelligence AI Safety Deep Reinforcement Learning Formal Verification Deep Neural Network Verification
Format(s):
Medium: X
Location:
San Diego, CA, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Deep reinforcement learning (DRL) has proven capable of superhuman performance on many complex tasks. To achieve this success, DRL algorithms train a decision-making agent to select the actions that maximize some long-term performance measure. In many consequential real-world domains, however, optimal performance is not enough to justify an algorithm’s use—for example, sometimes a system’s robustness, stability, or safety must be rigorously ensured. Thus, methods for verifying DRL systems have emerged. These algorithms can guarantee a system’s properties over an infinite set of inputs, but the task is not trivial. DRL relies on deep neural networks (DNNs). DNNs are often referred to as “black boxes” because examining their respective structures does not elucidate their decision-making processes. Moreover, the sequential nature of the problems DRL is used to solve promotes significant scalability challenges. Finally, because DRL environments are often stochastic, verification methods must account for probabilistic behavior. To address these complications, a new subfield has emerged. In this survey, we establish the foundations of DRL and DRL verification, define a taxonomy for DRL verification methods, describe approaches for dealing with stochasticity, characterize considerations related to writing specifications, enumerate common testing tasks/environments, and detail opportunities for future research. 
    more » « less
  2. In recent years, Deep Reinforcement Learning (DRL) has emerged as an effective approach to solving real-world tasks. However, despite their successes, DRL-based policies suffer from poor reliability, which limits their deployment in safety-critical domains. Various methods have been put forth to address this issue by providing formal safety guarantees. Two main approaches include shielding and verification. While shielding ensures the safe behavior of the policy by employing an external online component (i.e., a “shield”) that overrides potentially dangerous actions, this approach has a significant computational cost as the shield must be invoked at runtime to validate every decision. On the other hand, verification is an offline process that can identify policies that are unsafe, prior to their deployment, yet, without providing alternative actions when such a policy is deemed unsafe. In this work, we present verification-guided shielding — a novel approach that bridges the DRL reliability gap by integrating these two methods. Our approach combines both formal and probabilistic verification tools to partition the input domain into safe and unsafe regions. In addition, we employ clustering and symbolic representation procedures that compress the unsafe regions into a compact representation. This, in turn, allows to temporarily activate the shield solely in (potentially) unsafe regions, in an efficient manner. Our novel approach allows to significantly reduce runtime overhead while still preserving formal safety guarantees. We extensively evaluate our approach on two benchmarks from the robotic navigation domain, as well as provide an in-depth analysis of its scalability and completeness. 1 
    more » « less
  3. The ubiquity of distributed agreement protocols, such as consensus, has galvanized interest in verification of such protocolsas well asapplications built on top of them. The complexity and unboundedness of such systems, however, makes their verification onerous in general, and, particularly prohibitive for full automation. An exciting, recent breakthrough reveals that, through careful modeling, it becomes possible to reduce verification of interesting distributed agreement-based (DAB) systems, that are unbounded in the number of processes, to model checking of small, finite-state systems. It is an open question if such reductions are also possible for DAB systems that aredoubly-unbounded, in particular, DAB systems that additionally have unbounded data domains. We answer this question in the affirmative in this work thereby broadening the class of DAB systems which can be automatically and efficiently verified. We present a novel reduction which leveragesvalue symmetryand a new notion ofdata saturationto reduce verification of doubly-unbounded DAB systems to model checking of small, finite-state systems. We develop a tool, Venus, that can efficiently verify sophisticated DAB system models such as the arbitration mechanism for a consortium blockchain, a distributed register, and a simple key-value store. 
    more » « less
  4. This report presents the results of a friendly competition for formal verification of continuous and hybrid systems with artificial intelligence (AI) components. Specifically, machine learning (ML) components in cyber-physical systems (CPS), such as feedforward neural networks used as feedback controllers in closed-loop systems, are considered, which is a class of systems classically known as intelligent control systems, or in more modern and specific terms, neural network control systems (NNCS). We broadly refer to this category as AI and NNCS (AINNCS). The friendly competition took place as part of the workshop Applied Verification for Continuous and Hybrid Systems (ARCH) in 2024. In the 8th edition of this AINNCS category at ARCH-COMP, five tools have been applied to solve 12 benchmarks, which are CORA, CROWN-Reach, GoTube, JuliaReach, and NNV. This is the year with the largest interest in the community, with two new, and three previous participants. Following last year’s trend, despite the additional challenges presented, the verification results have improved year-over-year. In terms of computation time, we can observe that the previous participants have improved as well, showing speed-ups of up to one order of magnitude, such as JuliaReach on the TORA benchmark with ReLU controller, and NNV on the TORA benchmark with both heterogeneous controllers. 
    more » « less
  5. Abstract Many existing traffic signal controllers are either simple adaptive controllers based on sensors placed around traffic intersections, or optimized by traffic engineers on a fixed schedule. Optimizing traffic controllers is time consuming and usually require experienced traffic engineers. Recent research has demonstrated the potential of using deep reinforcement learning (DRL) in this context. However, most of the studies do not consider realistic settings that could seamlessly transition into deployment. In this paper, we propose a DRL-based adaptive traffic signal control framework that explicitly considers realistic traffic scenarios, sensors, and physical constraints. In this framework, we also propose a novel reward function that shows significantly improved traffic performance compared to the typical baseline pre-timed and fully-actuated traffic signals controllers. The framework is implemented and validated on a simulation platform emulating real-life traffic scenarios and sensor data streams. 
    more » « less