Demeniconi, Carlotta; Davidson, Ian
                            (Ed.)
                        
                    
            
                            This paper proposes a physics-guided machine learning approach that combines machine learning models and physics-based models to improve the prediction of water flow and temperature in river networks. We first build a recurrent graph network model to capture the interactions among multiple segments in the river network. Then we transfer knowledge from physics-based models to guide the learning of the machine learning model. We also propose a new loss function that balances the performance over different river segments. We demonstrate the effectiveness of the proposed method in predicting temperature and streamflow in a subset of the Delaware River Basin. In particular, the proposed method has brought a 33%/14% accuracy improvement over the state-of-the-art physics-based model and 24%/14% over traditional machine learning models (e.g., LSTM) in temperature/streamflow prediction using very sparse (0.1%) training data. The proposed method has also been shown to produce better performance when generalized to different seasons or river segments with different streamflow ranges. 
                        more » 
                        « less   
                     An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    