The Future of Privacy Forum (FPF) co-led a task force of experts to develop a Model Privacy Impact Assessment (PIA) Policy for governments and communities that are considering sharing personal data collected from “smart city” solutions. This Model PIA Policy was developed as part of the G20 Global Smart Cities Alliance on Technology Governance, a partnership of leading international organizations and city networks working to source tried-and-tested policy approaches to govern the use of smart city technologies. Its institutional partners represent more than 200,000 cities and local governments, leading companies, startups, research institutions, and civil society communities. more »« less
DeHart, J.; Baker, C.E.; Grant, C.
(, IARIA The Sixteenth International Conference on Wireless and Mobile Communications (ICWMC 2020))
null
(Ed.)
The expectation of people and futurists is that all respectable cities will become Smart Cities in the near future. Two main barriers stand in the way of the evolution of cities. First is cost, the transformation into a smart city is expensive (e.g., between $30 Million and $40 Billion) and only a few cities are able to obtain the resources required for upgrades. Second, many citizens equate the data collection and surveillance of smart city technology with aggressive infringements on privacy. In this paper, we describe how citizens, city planners, and companies can develop smart cities that do not require crippling loans and are respectful of privacy.
The promises of smart cities continue to overwhelm many people eager to live in them. Simultaneously, many people are still concerned about the increasing privacy risks associated with the core of the promises. The core of smart cities’ promises lies in generating and using data to enable urban technologies that provide, to some degree, value-added services and opportunities for both cities and their citizens. The promises of smart cities highlight three interdependent dimensions, namely the information type, purpose, and value that provide the basis of studying and addressing privacy concerns to enable successful smart cities. This paper presents a 3D privacy framework based on three interdependent dimensions that build on existing citizens’ privacy models [1] and framework [2] to hypothesize when citizens are likely to accept smart city technologies with privacy concerns, when citizens are more likely to accept trading their privacy for the provided valued services under defined regulations, and when citizens are likely to protest and disregard smart cities technologies altogether. The 3D privacy framework highlights new ways of evaluating how technologies impact citizens’ privacy and encourages adopting new ways to lessen citizens’ privacy concerns by implementing technology-specific agile regulation based on the metrics of security. Some specific examples of smart city technologies are discussed to illustrate the practicality and usefulness of the proposed 3D privacy framework in the smart cities’ space.
Fink, Jonathan
(, 2020 IEEE International Conference on Smart Computing (SMARTCOMP))
The collection and use of digital data by “smart city” programs raise complex operational and ethical questions that can best be addressed through carefully-monitored pilot studies before urban innovations are more widely adopted. We have created a network of single-owner campuses (academic, government, corporate and nonprofit) in the Cascadia megaregion that connects Portland (OR), Seattle (WA) and Vancouver (BC), where smart city products and services can be evaluated before deployment in neighborhoods and business districts. On the five initial campuses, we are co-locating assemblages of up to a dozen technologies through which issues of data interoperability, management, privacy and monopolization can be explored. The initial research and policy goals of this network are to educate the public about smart cities, improve accessibility for populations with disabilities, prepare city residents for natural disasters, and monitor urban tree canopies so they can better mitigate the urban heat island effect. If replicated in other regions, this testing approach can accelerate cities' responsible integration of data science solutions that can address both local and global problems.
McAslan, Devon; Najar Arevalo, Farah; King, David A.; Miller, Thaddeus R.
(, Humanities and Social Sciences Communications)
Abstract Pilot projects have emerged in cities globally as a way to experiment with the utilization of a suite of smart mobility and emerging transportation technologies. Automated vehicles (AVs) have become central tools for such projects as city governments and industry explore the use and impact of this emerging technology. This paper presents a large-scale assessment of AV pilot projects in U.S. cities to understand how pilot projects are being used to examine the risks and benefits of AVs, how cities integrate these potentially transformative technologies into conventional policy and planning, and how and what they are learning about this technology and its future opportunities and risks. Through interviews with planning practitioners and document analysis, we demonstrate that the approaches cities take for AVs differ significantly, and often lack coherent policy goals. Key findings from this research include: (1) a disconnect between the goals of the pilot projects and a city’s transportation goals; (2) cities generally lack a long-term vision for how AVs fit into future mobility systems and how they might help address transportation goals; (3) an overemphasis of non-transportation benefits of AV pilots projects; (4) AV pilot projects exhibit a lack of policy learning and iteration; and (5) cities are not leveraging pilot projects for public benefits. Overall, urban and transportation planners and decision makers show a clear interest to discover how AVs can be used to address transportation challenges in their communities, but our research shows that while AV pilot projects purport to do this, while having numerous outcomes, they have limited value for informing transportation policy and planning questions around AVs. We also find that AV pilot projects, as presently structured, may constrain planners’ ability to re-think transportation systems within the context of rapid technological change.
Many cities across the world are looking to use technology and innovation to improve the overall efficiency and safety for their residents. At the heart of these smart-city plans, a variety of intelligent transportation system technologies can be used to improve safety, enhance mobility measures (e.g., traffic flow), and minimize environmental impacts of a city’s mobility ecosystem. Early implementations of these ITS technologies often take place in affluent cities, where there are many funding opportunities and suitable areas for deployment. However, it is critical that we also develop smart city solutions that are focused on improving conditions of disadvantaged and environmental justice communities, whose residents have suffered the most from unmitigated urban sprawl and its environmental and health impacts. As a leading example, Inland Southern California has grown to be one of the largest hubs of goods movement in the world. Numerous logistics facilities such as warehouses, rail facilities, and truck depots have rapidly spread throughout these communities, with the local residents bearing a disproportionate burden of truck traffic, poor air quality, and adverse health effects. Further, the majority of residents have lower-wage jobs and very few mobility options, other than low-end personal car ownership. To improve this situation, UC Riverside researchers have focused their smart city research on these impacted communities, finding innovative solutions to eco-friendly traffic management, developing better-shared (electric) mobility solutions for the community, improving freight movements, and enhancing the transition to vehicle electrification. Numerous research and development projects are currently underway in Inland Southern California, spanning advanced smart city modeling and impact analysis, community outreach events, and real-world technology demonstrations. This chapter describes several of these ITS solutions and their potential for improving many cities around the world.
Finch, Kelsey, and Mattmiller, Michael. Model Policy: Privacy Impact Assessment. Retrieved from https://par.nsf.gov/biblio/10285290. G20 Global Smart Cities Alliance .
@article{osti_10285290,
place = {Country unknown/Code not available},
title = {Model Policy: Privacy Impact Assessment},
url = {https://par.nsf.gov/biblio/10285290},
abstractNote = {The Future of Privacy Forum (FPF) co-led a task force of experts to develop a Model Privacy Impact Assessment (PIA) Policy for governments and communities that are considering sharing personal data collected from “smart city” solutions. This Model PIA Policy was developed as part of the G20 Global Smart Cities Alliance on Technology Governance, a partnership of leading international organizations and city networks working to source tried-and-tested policy approaches to govern the use of smart city technologies. Its institutional partners represent more than 200,000 cities and local governments, leading companies, startups, research institutions, and civil society communities.},
journal = {G20 Global Smart Cities Alliance},
author = {Finch, Kelsey and Mattmiller, Michael},
editor = {null}
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.