Path guiding is a promising technique to reduce the variance of path tracing. Although existing online path guiding algorithms can eventually learn good sampling distributions given a large amount of time and samples, the speed of learning becomes a major bottleneck. In this paper, we accelerate the learning of sampling distributions by training a light-weight neural network offline to reconstruct from sparse samples. Uniquely, we design our neural network to directly operate convolutions on a sparse quadtree, which regresses a high-quality hierarchical sampling distribution. Our approach can reconstruct reasonably accurate sampling distributions faster, allowing for efficient path guiding and rendering. In contrast to the recent offline neural path guiding techniques that reconstruct low-resolution 2D images for sampling, our novel hierarchical framework enables more fine-grained directional sampling with less memory usage, effectively advancing the practicality and efficiency of neural path guiding. In addition, we take advantage of hybrid bidirectional samples including both path samples and photons, as we have found this more robust to different light transport scenarios compared to using only one type of sample as in previous work. Experiments on diverse testing scenes demonstrate that our approach often improves rendering results with better visual quality and lower errors. Our framework can also provide the proper balance of speed, memory cost, and robustness.
more »
« less
Real-Time Path Guiding Using Bounding Voxel Sampling
We propose a real-time path guiding method, Voxel Path Guiding (VXPG), that significantly improves fitting efficiency under limited sampling budget. Our key idea is to use a spatial irradiance voxel data structure across all shading points to guide the location of path vertices. For each frame, we first populate the voxel data structure with irradiance and geometry information. To sample from the data structure for a shading point, we need to select a voxel with high contribution to that point. To importance sample the voxels while taking visibility into consideration, we adapt techniques from offline many-lights rendering by clustering pairs of shading points and voxels. Finally, we unbiasedly sample within the selected voxel while taking the geometry inside into consideration. Our experiments show that VXPG achieves significantly lower perceptual error compared to other real-time path guiding and virtual point light methods under equal-time comparison. Furthermore, our method does not rely on temporal information, but can be used together with other temporal reuse sampling techniques such as ReSTIR to further improve sampling efficiency.
more »
« less
- Award ID(s):
- 2105806
- PAR ID:
- 10584751
- Publisher / Repository:
- ACM
- Date Published:
- Journal Name:
- ACM Transactions on Graphics
- Volume:
- 43
- Issue:
- 4
- ISSN:
- 0730-0301
- Page Range / eLocation ID:
- 1 to 14
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Statistical modeling and interpolation of space–time processes has gained increasing relevance over the last few years. However, real world data often exhibit characteristics that challenge conventional methods such as nonstationarity and temporal misalignment. For example, high frequency solar irradiance data are typically observed at fine temporal scales, but at sparse spatial sampling, so space–time interpolation is necessary to support solar energy studies. The nonstationarity and phase misalignment of such data challenges extant approaches. We propose random elastic space–time (REST) prediction, a novel method that addresses temporally-varying phase misalignment by combining elastic alignment and conventional kriging techniques. Moreover, uncertainty in both amplitude and phase alignment can be readily quantified in a conditional simulation framework, whereas conventional space–time methods only address am- plitude uncertainty. We illustrate our approach on a challenging solar irradiance dataset, where our method demonstrates superior predictive distributions compared to existing geostatistical and functional data analytic techniques.more » « less
-
Abstract Magnetic resonance imaging (MRI) is a technique that scans the anatomical structure of the brain, whereas functional magnetic resonance imaging (fMRI) uses the same basic principles of atomic physics as MRI scans but image metabolic function. A major goal of MRI and fMRI study is to precisely delineate various types of tissues, anatomical structure, pathologies, and detect the brain regions that react to outer stimuli (e.g., viewing an image). As a key feature of these MRI‐based neuroimaging data, voxels (cubic pixels of the brain volume) are highly correlated. However, the associations between voxels are often overlooked in the statistical analysis. We adapt a recently proposed dimension reduction method called the envelope method to analyze neuoimaging data taking into account correlation among voxels. We refer to the modified procedure the envelope chain procedure. Because the envelope chain procedure has not been employed before, we demonstrate in simulations the empirical performance of estimator, and examine its sensitivity when our assumptions are violated. We use the estimator to analyze the MRI data from ADHD‐200 study. Data analyses demonstrate that leveraging the correlations among voxels can significantly increase the efficiency of the regression analysis, thus achieving higher detection power with small sample sizes.more » « less
-
Abstract Recently, deep learning‐based denoising approaches have led to dramatic improvements in low sample‐count Monte Carlo rendering. These approaches are aimed at path tracing, which is not ideal for simulating challenging light transport effects like caustics, where photon mapping is the method of choice. However, photon mapping requires very large numbers of traced photons to achieve high‐quality reconstructions. In this paper, we develop the first deep learning‐based method for particle‐based rendering, and specifically focus on photon density estimation, the core of all particle‐based methods. We train a novel deep neural network to predict a kernel function to aggregate photon contributions at shading points. Our network encodes individual photons into per‐photon features, aggregates them in the neighborhood of a shading point to construct a photon local context vector, and infers a kernel function from the per‐photon and photon local context features. This network is easy to incorporate in many previous photon mapping methods (by simply swapping the kernel density estimator) and can produce high‐quality reconstructions of complex global illumination effects like caustics with an order of magnitude fewer photons compared to previous photon mapping methods. Our approach largely reduces the required number of photons, significantly advancing the computational efficiency in photon mapping.more » « less
-
A trajectory is a sequence of observations in time and space, for examples, the path formed by maritime vessels, orbital debris, or aircraft. It is important to track and reconstruct vessel trajectories using the Automated Identification System (AIS) data in real-world applications for maritime navigation safety. In this project, we use the National Science Foundation (NSF)'s Algorithms for Threat Detection program (ATD) 2019 Challenge AIS data to develop novel trajectory reconstruction method. Given a sequence ofNunlabeled timestamped observations, the goal is to track trajectories by clustering the AIS points with predicted positions using the information from the true trajectoriesΧ. It is a natural way to connect the observed pointxîwith the closest point that is estimated by using the location, time, speed, and angle information from a set of the points under considerationxi∀i∈ {1, 2, …,N}. The introduced method is an unsupervised clustering-based method that does not train a supervised model which may incur a significant computational cost, so it leads to a real-time, reliable, and accurate trajectory reconstruction method. Our experimental results show that the proposed method successfully clusters vessel trajectories.more » « less
An official website of the United States government

