Abstract The analysis of social and biological networks often involves modeling clusters of interest ascliquesor their graph‐theoretic generalizations. The ‐club model, which relaxes the requirement of pairwise adjacency in a clique to length‐bounded paths inside the cluster, has been used to model cohesive subgroups in social networks and functional modules or complexes in biological networks. However, if the graphs are time‐varying, or if they change under different conditions, we may be interested in clusters that preserve their property over time or under changes in conditions. To model such clusters that are conserved in a collection of graphs, we consider across‐graph‐clubmodel, a subset of nodes that forms a ‐club in every graph in the collection. In this article, we consider the canonical optimization problem of finding a cross‐graph ‐club of maximum cardinality in a graph collection. We develop integer programming approaches to solve this problem. Specifically, we introduce strengthened formulations, valid inequalities, and branch‐and‐cut algorithms based on delayed constraint generation. The results of our computational study indicate the significant benefits of using the approaches we introduce.
more »
« less
Pairwise Rearrangement is Fixed-Parameter Tractable in the Single Cut-and-Join Model
Genome rearrangement is a common model for molecular evolution. In this paper, we consider the Pairwise Rearrangement problem, which takes as input two genomes and asks for the number of minimum-length sequences of permissible operations transforming the first genome into the second. In the Single Cut-and-Join model (Bergeron, Medvedev, & Stoye, J. Comput. Biol. 2010), Pairwise Rearrangement is #P-complete (Bailey, et. al., COCOON 2023), which implies that exact sampling is intractable. In order to cope with this intractability, we investigate the parameterized complexity of this problem. We exhibit a fixed-parameter tractable algorithm with respect to the number of components in the adjacency graph that are not cycles of length 2 or paths of length 1. As a consequence, we obtain that Pairwise Rearrangement in the Single Cut-and-Join model is fixed-parameter tractable by distance. Our results suggest that the number of nontrivial components in the adjacency graph serves as the key obstacle for efficient sampling.
more »
« less
- Award ID(s):
- 2047756
- PAR ID:
- 10584768
- Editor(s):
- Bodlaender, Hans L
- Publisher / Repository:
- Schloss Dagstuhl – Leibniz-Zentrum für Informatik
- Date Published:
- Volume:
- 294
- ISSN:
- 1868-8969
- ISBN:
- 978-3-95977-318-8
- Page Range / eLocation ID:
- 3:1-3:16
- Subject(s) / Keyword(s):
- Genome Rearrangement Phylogenetics Single Cut-and-Join Computational Complexity Theory of computation → Complexity classes Mathematics of computing → Graph theory
- Format(s):
- Medium: X Size: 16 pages; 756715 bytes Other: application/pdf
- Size(s):
- 16 pages 756715 bytes
- Right(s):
- Creative Commons Attribution 4.0 International license; info:eu-repo/semantics/openAccess
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Francis Bach (Ed.)A graph homomorphism is a map between two graphs that preserves adjacency relations. We consider the problem of sampling a random graph homomorphism from a graph into a large network. We propose two complementary MCMC algorithms for sampling random graph homomorphisms and establish bounds on their mixing times and the concentration of their time averages. Based on our sampling algorithms, we propose a novel framework for network data analysis that circumvents some of the drawbacks in methods based on independent and neighborhood sampling. Various time averages of the MCMC trajectory give us various computable observables, including well-known ones such as homomorphism density and average clustering coefficient and their generalizations. Furthermore, we show that these network observables are stable with respect to a suitably renormalized cut dis- tance between networks. We provide various examples and simulations demonstrating our framework through synthetic networks. We also demonstrate the performance of our frame- work on the tasks of network clustering and subgraph classification on the Facebook100 dataset and on Word Adjacency Networks of a set of classic novels.more » « less
-
Bach, Francis (Ed.)A graph homomorphism is a map between two graphs that preserves adjacency relations. We consider the problem of sampling a random graph homomorphism from a graph into a large network. We propose two complementary MCMC algorithms for sampling random graph homomorphisms and establish bounds on their mixing times and the concentration of their time averages. Based on our sampling algorithms, we propose a novel framework for network data analysis that circumvents some of the drawbacks in methods based on independent and neighborhood sampling. Various time averages of the MCMC trajectory give us various computable observables, including well-known ones such as homomorphism density and average clustering coefficient and their generalizations. Furthermore, we show that these network observables are stable with respect to a suitably renormalized cut dis- tance between networks. We provide various examples and simulations demonstrating our framework through synthetic networks. We also demonstrate the performance of our frame- work on the tasks of network clustering and subgraph classification on the Facebook100 dataset and on Word Adjacency Networks of a set of classic novels.more » « less
-
The analysis of social and biological networks often involves model- ing clusters of interest as cliques or their graph-theoretic generaliza- tions. The 𝑘-club model, which relaxes the requirement of pairwise adjacency in a clique to length-bounded paths inside the cluster, has been used to model cohesive subgroups in social networks and functional modules/complexes in biological networks. However, if the graphs are time-varying, or if they change under different conditions, we may be interested in clusters that preserve their property over time or under changes in conditions. To model such clusters that are conserved in a collection of graphs, we consider a cross-graph 𝑘-club model, a subset of nodes that forms a 𝑘-club in every graph in the collection. In this paper, we consider the canonical optimization problem of finding a cross-graph 𝑘-club of maximum cardinality. We introduce algorithmic ideas to solve this problem and evaluate their performance on some benchmark instances. Published in: Proceedings of The International Network Optimization Conference (INOC) 2022, Aachen, Germanymore » « less
-
Saxena, Akrati (Ed.)We introduce a spatial graph and hypergraph model that smoothly interpolates between a graph with purely pairwise edges and a graph where all connections are in large hyperedges. The key component is a spatial clustering resolution parameter that varies between assigning all the vertices in a spatial region to individual clusters, resulting in the pairwise case, to assigning all the vertices in a spatial region to a single cluster, which results in the large hyperedge case. A key component of this model is that the spatial structure is invariant to the choice of hyperedges. Consequently, this model enables us to study clustering coefficients, graph diffusion, and epidemic spread and how their behavior changes as a function of the higher-order structure in the network with a fixed spatial substrate. We hope that our model will find future uses to distill or explain other behaviors in higher-order networks.more » « less
An official website of the United States government

