skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: In 2 Se 3 Synthesized by the FWF Method for Neuromorphic Computing
Abstract The development of next‐generation in‐memory and neuromorphic computing can be realized with memory transistors based on 2D ferroelectric semiconductors. Among these, In2Se3is the interesting since it possesses ferroelectricity in 2D quintuple layers. Synthesis of large amounts of In2Se3crystals with the desired phase, however, has not been previously achieved. Here, the gram‐scale synthesis of α‐In2Se3crystals using a flash‐within‐flash Joule heating method is demonstrated. This approach allows the synthesis of single‐phase α‐In2Se3crystals regardless of the conductance of precursors in the inner tube and enables the synthesis of gram‐scale quantities of α‐In2Se3crystals. Then, α‐In2Se3flakes are fabricated and used as a 2D ferroelectric semiconductor FET artificial synaptic device platform. By modulating the degree of polarization in α‐In2Se3flakes according to the gate electrical pulses, these devices exhibit distinct essential synaptic behaviors. Their synaptic performance shows excellent and robust reliability under repeated electrical pulses. Finally, it is demonstrated that the synaptic devices achieve an estimated learning accuracy of up to ≈87% for Modified National Institute of Standards and Technology patterns in a single‐layer neural network system.  more » « less
Award ID(s):
2329111
PAR ID:
10584784
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Electronic Materials
Volume:
11
Issue:
5
ISSN:
2199-160X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A synaptic memristor using 2D ferroelectric junctions is a promising candidate for future neuromorphic computing with ultra‐low power consumption, parallel computing, and adaptive scalable computing technologies. However, its utilization is restricted due to the limited operational voltage memory window and low on/off current (ION/OFF) ratio of the memristor devices. Here, it is demonstrated that synaptic operations of 2D In2Se3ferroelectric junctions in a planar memristor architecture can reach a voltage memory window as high as 16 V (±8 V) and ION/OFFratio of 108, significantly higher than the current literature values. The power consumption is 10−5 W at the on state, demonstrating low power usage while maintaining a large ION/OFFratio of 108compared to other ferroelectric devices. Moreover, the developed ferroelectric junction mimicked synaptic plasticity through pulses in the pre‐synapse. The nonlinearity factors are obtained 1.25 for LTP, −0.25 for LTD, respectively. The single‐layer perceptron (SLP) and convolutional neural network (CNN) on‐chip training results in an accuracy of up to 90%, compared to the 91% in an ideal synapse device. Furthermore, the incorporation of a 3 nm thick SiO2interface between the α‐In2Se3and the Au electrode resulted in ultrahigh performance among other 2D ferroelectric junction devices to date. 
    more » « less
  2. Abstract Utilizing the unique in‐plane/out‐of‐plane polarization coupling in ferroelectric van der Waals α‐In2Se3, ferroelectric‐polarization‐controlled electrical conductance modulation in two‐dimensional (2D) MoS2with a large dynamic range of over 5 orders of magnitude and excellent non‐volatility is demonstrated. This highly efficient control of the electrical conductance is facilitated by enhanced capacitive coupling through atomic‐layer‐deposition‐grown Al2O3as the dielectric medium. By varying the in‐plane poling bias to the ferroelectric α‐In2Se3, the electrical conductance of vertically stacked 2D MoS2can be tuned continuously. This approach enables simplified device design and provides great flexibility in device integrations, and it can be applied in principle to manipulate the electronic states in any 2D semiconductors for various applications such as transistors, tunneling devices, and reconfigurable electronics. The results also provide insight into the ferroelectric polarization screening by ambient chemical species, highlighting the need for surface passivation, and/or device encapsulations. 
    more » « less
  3. Abstract Specific ions can be intercalated into functional materials using the electrolyte gating technique, which has been widely used to regulate channel conductance in transistors and develop low‐power neuromorphic devices. However, in these devices, fundamental exploration of ion intercalation‐induced structural phase transitions remains largely overlooked and rarely explored. Here, the lithium‐based electrolyte gating technique is used to probe the collective interactions between ions, lattices, and electrons in a van der Waals ferroelectric semiconductor α‐In2Se3. Using a polymer electrolyte as the lithium‐ion reservoir and α‐In2Se3as the channel material, the intercalated lithium concentration via a gate electric field is modulated. This manipulation drives a phase transition in α‐In2Se3from a ferroelectric semiconductor to a dirty metal and finally to a metal, accompanied by a structural transformation. Concurrently, with enhanced intercalation, the ferroelectric hysteresis window progressively narrows and eventually disappears, indicating the evolution from switchable to non‐switchable polarization. This study represents a promising platform for the artificial construction of correlated material systems, enabling a systematic investigation into the interaction of ferroelectricity and electronic conduction using ion intercalation. 
    more » « less
  4. Abstract Theoretical and experimental investigations of various exfoliated samples taken from layered In4Se3crystals are performed. In spite of the ionic character of interlayer interactions in In4Se3and hence much higher calculated cleavage energies compared to graphite, it is possible to produce few‐nanometer‐thick flakes of In4Se3by mechanical exfoliation of its bulk crystals. The In4Se3flakes exfoliated on Si/SiO2have anisotropic electronic properties and exhibit field‐effect electron mobilities of about 50 cm2 V−1 s−1at room temperature, which are comparable with other popular transition metal chalcogenide (TMC) electronic materials, such as MoS2and TiS3. In4Se3devices exhibit a visible range photoresponse on a timescale of less than 30 ms. The photoresponse depends on the polarization of the excitation light consistent with symmetry‐dependent band structure calculations for the most expectedaccleavage plane. These results demonstrate that mechanical exfoliation of layered ionic In4Se3crystals is possible, while the fast anisotropic photoresponse makes In4Se3a competitive electronic material, in the TMC family, for emerging optoelectronic device applications. 
    more » « less
  5. null (Ed.)
    Indium Selenide (In 2 Se 3 ) is a newly emerged van der Waals (vdW) ferroelectric material, which unlike traditional insulating ferroelectric materials, is a semiconductor with a bandgap of about 1.36 eV. Ferroelectric diodes and transistors based on In 2 Se 3 have been demonstrated. However, the interplay between light and electric polarization in In 2 Se 3 has not been explored. In this paper, we found that the polarization in In 2 Se 3 can be programmed by optical stimuli, due to its semiconducting nature, where the photo generated carriers in In 2 Se 3 can alter the screening field and lead to polarization reversal. Utilizing these unique properties of In 2 Se 3 , we demonstrated a new type of multifunctional device based on 2D heterostructures, which can concurrently serve as a logic gate, photodetector, electronic memory and photonic memory. This dual electrical and optical operation of the memories can simplify the device architecture and offer additional functionalities, such as ultrafast optical erase of large memory arrays. In addition, we show that dual-gate structure can address the partial switching problem commonly observed in In 2 Se 3 ferroelectric transistors, as the two gates can enhance the vertical electric field and facilitate the polarization switching in the semiconducting In 2 Se 3 . These discovered effects are of general nature and should be observable in any ferroelectric semiconductor. These findings deepen the understanding of polarization switching and light-polarization interaction in semiconducting ferroelectric materials and open up their applications in multifunctional electronic and photonic devices. 
    more » « less