This paper presents a novel mission-oriented path planning algorithm for a team of Unmanned Aerial Vehicles (UAVs). In the proposed algorithm, each UAV takes autonomous decisions to find its flight path towards a designated mission area while avoiding collisions to stationary and mobile obstacles. The main distinction with similar algorithms is that the target destination for each UAV is not apriori fixed and the UAVs locate themselves such that they collectively cover a potentially time-varying mission area. One potential application for this algorithm is deploying a team of autonomous drones to collectively cover an evolving forest wildfire and provide virtual reality for firefighters. We formulated the algorithm based on Reinforcement Learning (RL) with a new method to accommodate continuous state space for adjacent locations. To consider a more realistic scenario, we assess the impact of localization errors on the performance of the proposed algorithm. Simulation results show that the success probability for this algorithm is about 80% when the observation error variance is as high as 100 (SNR:-6dB).
more »
« less
Decentralized Multi-Agent Search for Moving Targets Using Road Network Gaussian Process Regressions
Unmanned aerial vehicles (UAVs) can collaborate as teams to accomplish diverse mission objectives, such as target search and tracking. This paper introduces a method that leverages accumulated target-density information over the course of a UAV mission to adapt path-planning rewards, guiding UAVs toward areas with a higher likelihood of target presence. The target density is modeled using a Gaussian process, which is iteratively updated as the UAVs search the environment. Unlike conventional search algorithms that prioritize unexplored regions, this approach incentivizes revisiting target-rich areas. The target-density information is shared across UAVs using decentralized consensus filters, enabling cooperative path selection that balances the exploration of uncertain regions with the exploitation of known high-density areas. The framework presented in this paper provides an adaptive cooperative search method that can quickly develop an understanding of the region’s target-dense areas, helping UAVs refine their search. Through Monte Carlo simulations, we demonstrate this method in both a 2D grid region and road networks, showing up to a 26% improvement in target density estimates.
more »
« less
- Award ID(s):
- 2139551
- PAR ID:
- 10584993
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Drones
- Volume:
- 8
- Issue:
- 11
- ISSN:
- 2504-446X
- Page Range / eLocation ID:
- 606
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Robots such as unmanned aerial vehicles (UAVs) deployed for search and rescue (SAR) can explore areas where human searchers cannot easily go and gather information on scales that can transform SAR strategy. Multi-UAV teams therefore have the potential to transform SAR by augmenting the capabilities of human teams and providing information that would otherwise be inaccessible. Our research aims to develop new theory and technologies for field deploying autonomous UAVs and managing multi-UAV teams working in concert with multi-human teams for SAR. Specifically, in this paper we summarize our work in progress towards these goals, including: (1) a multi-UAV search path planner that adapts to human behavior; (2) an in-field distributed computing prototype that supports multi-UAV computation and communication; (3) behavioral modeling that fields spatially localized predictions of lost person location; and (4) an interface between human searchers and UAVs that facilitates human-UAV interaction over a wide range of autonomy.more » « less
-
ABSTRACT Unmanned aerial vehicles (UAVs) are revolutionizing a wide range of military and civilian applications. Since mission failures caused by malfunctions of UAVs can incur significant economic losses, modeling and ensuring the reliability of UAV‐based mission systems is a crucial area of research with challenges posed by multiple dependent phases of operations and collaborations among heterogeneous UAVs. The existing reliability models are mostly applicable to single‐UAV or homogeneous multi‐UAV systems. This paper advances the state of the art by proposing a new analytical modeling method to assess the reliability of a multi‐phased mission performed by heterogeneous collaborative UAVs. The proposed method systematically integrates an integral‐based Markov approach with a binary decision diagram‐based combinatorial method, addressing inter‐ and intraphase collaborations as well as phase‐dependent configurations of heterogeneous UAVs for accomplishing different tasks. As demonstrated by a detailed analysis of a two‐phase rescue mission performed by six UAVs, the proposed method has no limitations on UAV's time‐to‐failure and time‐to‐detection distributions. Another contribution is to formulate and solve UAV allocation problems, achieving a balance between mission success probability and total cost. Given the uncertainties inherent in the mission scenario, the random phase duration problem is also examined.more » « less
-
Unmanned Aerial Vehicles (UAVs) find increasing use in mission critical tasks both in civilian and military operations. Most UAVs rely on Inertial Measurement Units (IMUs) to calculate vehicle attitude and track vehicle position. Therefore, an incorrect IMU reading can cause a vehicle to destabilize, and possibly even crash. In this paper, we describe how a strategic adversary might be able to introduce spurious IMU values that can deviate a vehicle from its mission-specified path while at the same time evade customary anomaly detection mechanisms, thereby effectively perpetuating a “stealthy attack” on the system. We explore the feasibility of a Deep Neural Network (DNN) that uses a vehicle's state information to calculate the applicable IMU values to perpetrate such an attack. The eventual goal is to cause a vehicle to perturb enough from its mission parameters to compromise mission reliability, while, from the operator's perspective, the vehicle still appears to be operating normally.more » « less
-
Urban air mobility (UAM) using unmanned aerial vehicles (UAV) is an emerging way of air transportation within metropolitan areas. For the sake of the successful operations of UAM in dynamic and uncertain airspace environments, it is important to provide safe path planning for UAVs. To achieve the path planning with safety assurance, the first step is to detect collisions. Due to uncertainty, especially data-driven uncertainty, it’s impossible to decide deterministically whether a collision occurs between a pair of UAVs. Instead, we are going to evaluate the probability of collision online in this paper for any general data-driven distribution. A sampling method based on kernel density estimator (KDE) is introduced to approximate the data-driven distribution of the uncertainty, and then the probability of collision can be converted to the Riemann sum of KDE values over the domain of the combined safety range. Comprehensive numerical simulations demonstrate the feasibility and eciency of the online evaluation of probabilistic collision for UAM using the proposed algorithm of collision detection.more » « less
An official website of the United States government

