skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tyche: Making Sense of Property-Based Testing Effectiveness
Software developers increasingly rely on automated methods to assess the correctness of their code. One such method is property-based testing (PBT), wherein a test harness generates hundreds or thousands of inputs and checks the outputs of the program on those inputs using parametric properties. Though powerful, PBT induces a sizable gulf of evaluation: developers need to put in nontrivial effort to understand how well the different test inputs exercise the software under test. To bridge this gulf, we propose Tyche, a user interface that supports sensemaking around the effectiveness of property-based tests. Guided by a formative design exploration, our design of Tyche supports developers with interactive, configurable views of test behavior with tight integrations into modern developer testing workflow. These views help developers explore global testing behavior and individual test inputs alike. To accelerate the development of powerful, interactive PBT tools, we define a standard for PBT test reporting and integrate it with a widely used PBT library. A self-guided online usability study revealed that Tyche’s visualizations help developers to more accurately assess software testing effectiveness.  more » « less
Award ID(s):
2402449
PAR ID:
10585033
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
ACM
Date Published:
ISBN:
9798400706288
Format(s):
Medium: X
Location:
Pittsburgh PA USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Property-based testing is a mainstay of functional programming, boasting a rich literature, an enthusiastic user community, and an abundance of tools — so many, indeed, that new users may have difficulty choosing. Moreover, any given framework may support a variety of strategies for generating test inputs; even experienced users may wonder which are better in a given situation. Sadly, the PBT literature, though long on creativity, is short on rigorous comparisons to help answer such questions. We present Etna, a platform for empirical evaluation and comparison of PBT techniques. Etna incorporates a number of popular PBT frameworks and testing workloads from the literature, and its extensible architecture makes adding new ones easy, while handling the technical drudgery of performance measurement. To illustrate its benefits, we use Etna to carry out several experiments with popular PBT approaches in both Coq and Haskell, allowing users to more clearly understand best practices and tradeoffs. 
    more » « less
  2. Gibbons, Jeremy (Ed.)
    CONTEXT The success of QuickCheck has led to the development of property-based testing (PBT) libraries for many languages and the process is getting increasing attention. However, unlike regular testing, PBT is not widespread in collegiate curricula. Furthermore, the value of PBT is not limited to software testing. The growing use of formal methods in, and the growth of software synthesis, all create demand for techniques to train students and developers in the art of specification writing. We posit that PBT forms a strong bridge between testing and the act of specification: it’s a form of testing where the tester is actually writing abstract specifications. INQUIRY Even well-informed technologists mention the difficulty of finding good motivating examples for its use. We take steps to fill this lacuna. APPROACH & KNOWLEDGE We find that the use of “relational” problems—those for which an input may admit multiple valid outputs—easily motivates the use of PBT. We also notice that such problems are readily available in the computer science pantheon of problems (e.g., many graph and sorting algorithms). We have been using these for some years now to teach PBT in collegiate courses. GROUNDING In this paper, we describe the problems we use and report on students’ completion of them. We believe the problems overcome some of the motivation issues described above. We also show that students can do quite well at PBT for these problems, suggesting that the topic is well within their reach. In the process, we introduce a simple method to evaluate the accuracy of their specifications, and use it to characterize their common mistakes. IMPORTANCE Based on our findings, we believe that relational problems are an underutilized motivating example for PBT. We hope this paper initiates a catalog of such problems for educators (and developers) to use, and also provides a concrete (though by no means exclusive) method to analyze the quality of PBT. 
    more » « less
  3. Bounded-exhaustive testing (BET), which exercises a program under test for all inputs up to some bounds, is an effective method for detecting software bugs. Systematic property-based testing is a BET approach where developers write test generation programs that describe properties of test inputs. Hybrid test generation programs offer the most expressive way to write desired properties by freely combining declarative filters and imperative generators. However, exploring hybrid test generation programs, to obtain test inputs, is both computationally demanding and challenging to parallelize. We present the first programming and execution models, dubbed Tempo, for parallel exploration of hybrid test generation programs. We describe two different strategies for mapping the computation to parallel hardware and implement them both for GPUs and CPUs. We evaluated Tempo by generating instances of various data structures commonly used for benchmarking in the BET domain. Additionally, we generated CUDA programs to stress test CUDA compilers, finding four bugs confirmed by the developers. 
    more » « less
  4. null (Ed.)
    Unit testing focuses on verifying the functions of individual units of a software system. It is challenging due to the high inter-dependencies among software units. Developers address this by mocking-replacing the dependency by a "faked" object. Despite the existence of powerful, dedicated mocking frameworks, developers often turn to a "hand-rolled" approach-inheritance. That is, they create a subclass of the dependent class and mock its behavior through method overriding. However, this requires tedious implementation and compromises the design quality of unit tests. This work contributes a fully automated refactoring framework to identify and replace the usage of inheritance by using Mockito-a well received mocking framework. Our approach is built upon the empirical experience from five open source projects that use inheritance for mocking. We evaluate our approach on four other projects. Results show that our framework is efficient, generally applicable to new datasets, mostly preserves test case behaviors in detecting defects (in the form of mutants), and decouples test code from production code. The qualitative evaluation by experienced developers suggests that the auto-refactoring solutions generated by our framework improve the quality of the unit test cases in various aspects, such as making test conditions more explicit, as well as improved cohesion, readability, understandability, and maintainability with test cases. 
    more » « less
  5. Unit testing focuses on verifying the functions of individual units of a software system. It is challenging due to the high inter dependencies among software units. Developers address this by mocking—replacing the dependency by a “fake” object. Despite the existence of powerful, dedicated mocking frameworks, developers often turn to a “hand-rolled” approach—inheritance. That is, they create a subclass of the dependent class and mock its behavior through method overriding. However, this requires tedious implementation and compromises the design quality of unit tests. This work contributes a fully automated refactoring framework to identify and replace the usage of inheritance by using Mockito—a well received mocking framework. Our approach is built upon the empirical experience from five open source projects that use inheritance for mocking. We evaluate our approach on nine other projects. Results show that our framework is efficient, generally applicable to new datasets, mostly preserves test case behaviors in detecting defects (in the form of mutants), and decouples test code from production code. The qualitative evaluation by experienced developers suggests that the auto-refactoring solutions generated by our framework improve the quality of the unit test cases in various aspects, such as making test conditions more explicit, as well as improved cohesion, readability, understandability, and maintainability with test cases. Finally, we submit 23 pull requests containing our refactoring solutions to the open-source projects. It turns out that, 9 requests are accepted/merged, 6 requests are rejected, the remaining requests are pending (5 requests), with unexpected exceptions (2 requests), or undecided (1 request). In particular, among the 21 open source developers that are involved in the reviewing process, 81% give positive votes. This indicates that our refactoring solutions are quite well received by the open-source projects and developers. 
    more » « less