On February 6, 2023, two large earthquakes occurred near the Turkish town of Kahramanmaraş. The moment magnitude (Mw) 7.8 mainshock ruptured a 310 km-long segment of the left-lateral East Anatolian Fault, propagating through multiple releasing step-overs. The Mw 7.6 aftershock involved nearby left-lateral strike-slip faults of the East Anatolian Fault Zone, causing a 150 km-long rupture. We use remote-sensing observations to constrain the spatial distribution of coseismic slip for these two events and the February 20 Mw 6.4 aftershock near Antakya. Pixel tracking of optical and synthetic aperture radar data of the Sentinel-2 and Sentinel-1 satellites, respectively, provide near-field surface displacements. High-rate Global Navigation Satellite System data constrain each event separately. Coseismic slip extends from the surface to about 15 km depth with a shallow slip deficit. Most aftershocks cluster at major fault bends, surround the regions of high coseismic slip, or extend outward of the ruptured faults. For the mainshock, rupture propagation stopped southward at the diffuse termination of the East Anatolian fault and tapered off northward into the Pütürge segment, some 20 km south of the 2020 Mw 6.8 Elaziğ earthquake, highlighting a potential seismic gap. These events underscore the high seismic potential of immature fault systems.
more »
« less
This content will become publicly available on February 24, 2026
Dense Seismic Recordings of the 2023 Kahramanmaraş Earthquake Sequence in Southeastern Türkiye
Abstract The devastating 6 February 2023 Kahramanmaraş earthquake sequence in southeastern Türkiye started with a moment magnitude (Mw) 7.8 earthquake, for which the initial rupture broke the Sakçagöz segment near Nurdağı and then jumped into a bilateral rupture along multiple segments of the Eastern Anatolian fault zone (EAFZ). This complicated rupture was followed nine hours later by an Mw 7.6 event near Ekinözü. To better understand the spatiotemporal evolution of aftershocks, site amplification, and the structural and tectonic framework of the EAFZ in this diffuse triple junction, we deployed a dense seismometer array covering both aftershock zones for nearly four months. The main Eastern Anatolian Seismic Temporary (EAST) array includes 125 nodal, 10 broadband, and 6 strong-motion seismic stations distributed around the rupture zone. An additional linear array of 73 nodal stations was also installed across the Pazarcık segment of the EAFZ and the Sakçagöz segment near the Mw 7.8 epicenter to record fault-zone waves for ∼30 days. This article shows example recordings and the EAST array geometry, preliminary research results, and the metadata related to all of the stations in this array. A deep-learning-based phase picking for one month of continuous recording yielded millions of seismic phase readings and tens of thousands of aftershock locations after phase associations. We also give examples of both local and teleseismic waveforms recorded by the nodal arrays, which can be used for subsequent high-resolution earthquake relocation, imaging of crustal structures, and fault-zone imaging.
more »
« less
- PAR ID:
- 10585045
- Publisher / Repository:
- Seismological Society of America
- Date Published:
- Journal Name:
- Seismological Research Letters
- ISSN:
- 0895-0695
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The East Anatolian fault in Turkey exhibits along-strike rupture segmentation, typically resulting in earthquakes with moment magnitude (Mw) up to 7.5 that are confined to individual segments. However, on 6 February 2023, a catastrophic Mw 7.8 earthquake struck near Kahramanmaraş (southeastern Turkey), defying previous expectations by rupturing multiple segments spanning over 300 km and overcoming multiple geometric complexities. We explore the mechanics of successive single- and multi-segment ruptures using numerical models of the seismic cycle calibrated to historical earthquake records and geodetic observations of the 2023 doublet. Our model successfully reproduces the observed historical rupture segmentation and the rare occurrence of multi-segment earthquakes. The segmentation pattern is influenced by variations in long-term slip rate along strike across the kinematically complex fault network between the Arabian and Anatolian plates. Our physics-based seismic cycle simulations shed light on the long-term variability of earthquake size that shapes seismic hazards.more » « less
-
Abstract We probe the interaction of large earthquakes on the East Anatolian fault zone, site of four Mw ≥ 6.8 events since 2020. We find that the 2023 Mw 7.8 Pazarcık shock promoted the Mw 7.7 Elbistan earthquake 9 hr later, largely through unclamping of the epicentral patch of the future rupture. Epicentral unclamping is also documented in the 1987 Superstition Hills, 1997 Kagoshima, and 2019 Ridgecrest sequences, so this may be common. The Mw 7.7 Elbistan earthquake, in turn, is calculated to have reduced the shear stress on the central Pazarcık rupture, producing a decrease in the aftershock rate along that section of the rupture. Nevertheless, the Mw 7.7 event ruptured through a Çardak fault section on which the shear stress was decreased by the Mw 7.8 rupture, and so rupture propagation was not halted by the static stress decrease. The 2020 Mw 6.8 Doğanyol–Sivrice earthquake, located beyond the northeast tip of the Mw 7.8 Pazarcık rupture, locally dropped the stress by ∼10 bars. The 2023 Mw 7.8 earthquake then increased the stress there by 1–2 bar, leaving a net stress drop, resulting in a hole in the 2023 Pazarcık aftershocks. We find that many lobes of calculated stress increase caused by the 2020–2023 Mw 6.8–7.8 earthquakes are sites of aftershocks, and we calculate 5–10 faults in several locations off the ruptures brought closer to failure. The earthquakes also cast broad stress shadows in which most faults were brought farther from failure, and we observe the beginnings of seismicity rate decreases in some of the deepest stress shadows. Some 41 Mw ≥ 5 aftershocks have struck since the Mw 7.8 mainshock. But based on these Coulomb interactions and on the rapid Kahramanmaraş aftershock decay, we forecast only about 1–3 Mw ≥ 5 earthquakes during the 12–month period beginning 1 December 2023, which is fortunately quite low.more » « less
-
Abstract Two major earthquakes (MW7.8 and MW7.7) ruptured left-lateral strike-slip faults of the East Anatolian Fault Zone (EAFZ) on February 6, 2023, causing >59,000 fatalities and ~$119B in damage in southeastern Türkiye and northwestern Syria. Here we derived kinematic rupture models for the two events by inverting extensive seismic and geodetic observations using complex 5-6 segment fault models constrained by satellite observations and relocated aftershocks. The larger event nucleated on a splay fault, and then propagated bilaterally ~350 km along the main EAFZ strand. The rupture speed varied from 2.5-4.5 km/s, and peak slip was ~8.1 m. 9-h later, the second event ruptured ~160 km along the curved northern EAFZ strand, with early bilateral supershear rupture velocity (>4 km/s) followed by a slower rupture speed (~3 km/s). Coulomb Failure stress increase imparted by the first event indicates plausible triggering of the doublet aftershock, along with loading of neighboring faults.more » « less
-
null (Ed.)ABSTRACT The 2019 Ridgecrest earthquake sequence culminated in the largest seismic event in California since the 1999 Mw 7.1 Hector Mine earthquake. Here, we combine geodetic and seismic data to study the rupture process of both the 4 July Mw 6.4 foreshock and the 6 July Mw 7.1 mainshock. The results show that the Mw 6.4 foreshock rupture started on a northwest-striking right-lateral fault, and then continued on a southwest-striking fault with mainly left-lateral slip. Although most moment release during the Mw 6.4 foreshock was along the southwest-striking fault, slip on the northwest-striking fault seems to have played a more important role in triggering the Mw 7.1 mainshock that happened ∼34 hr later. Rupture of the Mw 7.1 mainshock was characterized by dominantly right-lateral slip on a series of overall northwest-striking fault strands, including the one that had already been activated during the nucleation of the Mw 6.4 foreshock. The maximum slip of the 2019 Ridgecrest earthquake was ∼5 m, located at a depth range of 3–8 km near the Mw 7.1 epicenter, corresponding to a shallow slip deficit of ∼20%–30%. Both the foreshock and mainshock had a relatively low-rupture velocity of ∼2 km/s, which is possibly related to the geometric complexity and immaturity of the eastern California shear zone faults. The 2019 Ridgecrest earthquake produced significant stress perturbations on nearby fault networks, especially along the Garlock fault segment immediately southwest of the 2019 Ridgecrest rupture, in which the coulomb stress increase was up to ∼0.5 MPa. Despite the good coverage of both geodetic and seismic observations, published coseismic slip models of the 2019 Ridgecrest earthquake sequence show large variations, which highlight the uncertainty of routinely performed earthquake rupture inversions and their interpretation for underlying rupture processes.more » « less
An official website of the United States government
