Droughts are a natural phenomenon with significant impact on society and the environment. Their frequency and severity are projected to increase toward the end of the century, which makes urgent the analysis of future drought characteristics to inform stakeholders and to allow the investigation of their effects on different domains. In this study, we developed Future Global Drought Layers composed of SPI and SPEI indices for 23 GCMs of the NEX-GDDP-CMIP6 dataset, including historical (1980-2014) data and 4 future projections (2015-2100) under four climate scenarios: SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5. The drought indices were calculated for 3-, 6- and 12-month timescales. The data is gridded in a regular latitude-longitude format, with a spatial resolution of 0.25º (~25 km) and monthly time resolution.
more »
« less
Global Future Drought Layers Based on Downscaled CMIP6 Models and Multiple Socioeconomic Pathways
Abstract Droughts are a natural hazard of growing concern as they are projected to increase in frequency and severity for many regions of the world. The identification of droughts and their future characteristics is essential to building an understanding of the geography and magnitude of potential drought change trajectories, which in turn is critical information to manage drought resilience across multiple sectors and disciplines. Adding to this effort, we developed a dataset of global historical and projected future drought indices over the 1980–2100 period based on downscaled CMIP6 models across multiple shared socioeconomic pathways (SSP). The dataset is composed of two indices: the Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI) for 23 downscaled global climate models (GCMs) (0.25-degree resolution), including historical (1980–2014) and future projections (2015–2100) under four climate scenarios: SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5. The drought indices were calculated for 3-, 6- and 12-month accumulation timescales and are available as gridded spatial datasets in a regular latitude-longitude format at monthly time resolution.
more »
« less
- PAR ID:
- 10585209
- Publisher / Repository:
- Nature Research
- Date Published:
- Journal Name:
- Scientific Data
- Volume:
- 12
- Issue:
- 1
- ISSN:
- 2052-4463
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Drought indices — Standardized Precipitation Evapotranspiration Index (SPEI) and the self-calibrating Palmer Drought Severity Index (scPDSI) —where derived from 9 United States Historical Climate Network (USHCN) stations on the Chihuahuan Desert in North America for this dataset. USHCN is a subset of the NOAA Cooperative Observer Program (COOP) Network, which consists of selected sites based on spatial coverages and completeness of data. Monthly precipitation depths, minimum, maximum and mean temperature were pulled from the dataset. These drought indices were derived using the SPEI package and scPDSI packages in R. Potential evapotranspiration was also calculated in R using the Thornthwaite method. All 9 sites are within the bounds of the Chihuahuan Desert in the state of New Mexico, with a single site (EL PASO) in the state of Texas.more » « less
-
While recent increases in heavy precipitation events in some midlatitude regions are consistent with climate model simulations, evidence of such increases in high latitudes is more tenuous, partly because of data limitations. The present study evaluates historical and future changes in extreme precipitation events in Alaska. Using the ERA5 reanalysis, station data, and output from two downscaled global climate models, we examine precipitation-driven flood events at five diverse locations in Alaska where major historical floods provide benchmarks: Fairbanks (August 1967), Seward (October 1986), Allakaket/Bettles (August 1994), Kivalina (August 2012), and Haines (December 2020). We place these precipitation events into a framework of historical trends and end-of-century (2065–2100) model projections. In all but one of the flood events, the amount of rainfall was the highest on record for the event duration, and precipitation events of this magnitude are generally projected by the models to remain infrequent. All of the cases had subtropical or tropical moisture sources. None of the locations show statistically significant historical trends in the magnitude of extreme precipitation events. However, the frequencies of heavy precipitation events are projected to increase at most of the locations. The frequency of events with 2 year and 5 year historical return intervals is projected to become more frequent, especially in the Interior, and in some cases increase to several times per year. Decreases are projected only for Seward along Alaska’s southern coast.more » « less
-
This study assesses projections from 24 CMIP5 models of number, duration, and severity ofpluvial and drought events utilizing 6-month standardized precipitation index. Increased variability ofstandardized precipitation index is projected globally. More frequent, longer lasting, and stronger pluvialsare projected in wet regions, and the same for droughts in dry regions. Worsening pluvials and droughtsare most apparent in the Northern Hemisphere midlatitudes and the Americas, respectively. Uniquely, thisstudy investigates pluvials and droughts in locations where the precipitation trend is of the opposite sign.In drying regions, 40% of grid points project an increase in number and 65% project an increase in durationof severe pluvials. Projections for severe drought events in wetting regions show similar projections. Asprecipitation trends alone do not provide information about pluvial and drought characteristics this studyhas important implications for planning and resilience.more » « less
-
Abstract. Global projections for ocean conditions in 2100 predict that the North Pacific will experience some of the largest changes. Coastal processes that drive variability in the region can alter these projected changes but are poorly resolved by global coarse-resolution models. We quantify the degree to which local processes modify biogeochemical changes in the eastern boundary California Current System (CCS) using multi-model regionally downscaled climate projections of multiple climate-associated stressors (temperature, O2, pH, saturation state (Ω), and CO2). The downscaled projections predict changes consistent with the directional change from the global projections for the same emissions scenario. However, the magnitude and spatial variability of projected changes are modified in the downscaled projections for carbon variables. Future changes in pCO2 and surface Ω are amplified, while changes in pH and upper 200 m Ω are dampened relative to the projected change in global models. Surface carbon variable changes are highly correlated to changes in dissolved inorganic carbon (DIC), pCO2 changes over the upper 200 m are correlated to total alkalinity (TA), and changes at the bottom are correlated to DIC and nutrient changes. The correlations in these latter two regions suggest that future changes in carbon variables are influenced by nutrient cycling, changes in benthic–pelagic coupling, and TA resolved by the downscaled projections. Within the CCS, differences in global and downscaled climate stressors are spatially variable, and the northern CCS experiences the most intense modification. These projected changes are consistent with the continued reduction in source water oxygen; increase in source water nutrients; and, combined with solubility-driven changes, altered future upwelled source waters in the CCS. The results presented here suggest that projections that resolve coastal processes are necessary for adequate representation of the magnitude of projected change in carbon stressors in the CCS.more » « less
An official website of the United States government

