The emergence of increasingly powerful AI technologies calls for the design and development of K-12 AI literacy curricula that can support students who will be entering a profoundly changed labor market. However, developing, implementing, and scaling AI literacy curricula poses significant challenges. It will be essential to develop a robust, evidence-based AI education research foundation that can inform AI literacy curriculum development. Unlike K-12 science and mathematics education, there is not currently a research foundation for K-12 AI education. In this article we provide a component-based definition of AI literacy, present the need for implementing AI literacy education across all grade bands, and argue for the creation of research programs across four areas of AI education: (1) K-12 AI Learning & Technology; (2) K-12 AI Education Integration into STEM, Language Arts, and Social Science Education; (3) K-12 AI Professional Development for Teachers and Administrators; and (4) K-12 AI Assessment.
more »
« less
This content will become publicly available on April 7, 2026
A Case Study of Integrating AI Literacy Education in a Biology Class
Abstract Artificial intelligence (AI) has gained widespread public interest in recent years. However, as AI literacy remained excluded from the standard academic curricula, AI education in the US was predominantly offered through extra-curricular activities, which limited AI learning exposure to only a select group of students. Given these limitations, the need to integrate AI literacy education into the standard curricula is increasingly evident. This study investigated the integration of AI learning in an advanced biology course. Thirty-seven students participated in four lessons embedding AI learning in biology contexts. The interplay of students’ AI learning and biology knowledge was examined from the quantitative measure of conceptual understanding and qualitative analysis of interdisciplinary reasoning. This concurrent triangulation research design utilized results from both quantitative and qualitative analyses to develop a comprehensive understanding of students’ AI learning in the biology context. The results of the study showed a significant improvement in students’ AI concepts. Students’ biology knowledge had a slight increase, but it was not statistically significant. Both quantitative and qualitative results underscored a close connection between students’ AI learning and their biology knowledge, though the quantitative findings were not conclusive in some lessons. The article concluded with a discussion of the potential reasons for those discrepancies. In addition, suggestions were provided for future research and practitioners who are interested in integrating AI education across curricula.
more »
« less
- PAR ID:
- 10585231
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- International Journal of Artificial Intelligence in Education
- ISSN:
- 1560-4292
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
There are many initiatives that teach Artificial Intelligence (AI) literacy to K-12 students. Most downsize college-level instructional materials to grade-level appropriate formats, overlooking students' unique perspectives in the design of curricula. To investigate the use of educational games as a vehicle for uncovering youth's understanding of AI instruction, we co-designed games with 39 Black, Hispanic, and Asian high school girls and non-binary youth to create engaging learning materials for their peers. We conducted qualitative analyses on the designed game artifacts, student discourse, and their feedback on the efficacy of learning activities. This study highlights the benefits of co-design and learning games to uncover students' understanding and ability to apply AI concepts in game-based learning, their emergent perspectives of AI, and the prior knowledge that informs their game design choices. Our research uncovers students' AI misconceptions and informs the design of educational games and grade-level appropriate AI instruction.more » « less
-
The rapid advancements in Artificial Intelligence (AI) hold the promise of transformative benefits across industries, including construction. To navigate this changing landscape, construction students must not only harness AI's potential but also grasp its ethical considerations and potential challenges. As such, there is a growing imperative within construction education to foster AI literacy among prospective professionals. This study developed and integrated an AI in Construction course module into an undergraduate construction management course. The primary goal is to equip students with AI literacy, achieved through a comprehensive approach that encompasses both theoretical knowledge, covering essential AI concepts and their applications in construction, and practical hands-on experiences, exemplified by a project focused on computer vision for personal protective equipment (PPE) inspection. Results from the course module implementation show that students gained a basic understanding of AI fundamentals after the module, such as dataset annotation, model development, deployment, and evaluation. Qualitative feedback indicates students were motivated to explore further AI-related topics in construction, and several topics that are of their interest were identified. These findings affirm the effectiveness of the proposed module and offer valuable insights for further development and enhancement of AI-related modules in construction education.more » « less
-
Jodie Jenkinson, Susan Keen (Ed.)While visual literacy has been identified as a foundational skill in life science education, there are many challenges in teaching and assessing biomolecular visualization skills. Among these are the lack of consensus about what constitutes competence and limited understanding of student and instructor perceptions of visual literacy tasks. In this study, we administered a set of biomolecular visualization assessments, developed as part of the BioMolViz project, to both students and instructors at multiple institutions and compared their perceptions of task difficulty. We then analyzed our findings using a mixed-methods approach. Quantitative analysis was used to answer the following research questions: (1) Which assessment items exhibit statistically significant disparities or agreements in perceptions of difficulty between instructors and students? (2) Do these perceptions persist when controlling for race/ethnicity and gender? and (3) How does student perception of difficulty relate to performance? Qualitative analysis of open-ended comments was used to identify predominant themes related to visual problem solving. The results show that perceptions of difficulty significantly differ between students and instructors and that students’ performance is a significant predictor of their perception of difficulty. Overall, this study underscores the need to incorporate deliberate instruction in visualization into undergraduate life science curricula to improve student ability in this area. Accordingly, we offer recommendations to promote visual literacy skills in the classroom.more » « less
-
A multidisciplinary service-learning project that involved teaching engineering to fourth and fifth graders was implemented in three sets of engineering and education classes to determine if there was an impact on engineering knowledge and teamwork skills in both the engineering and education students as well as persistence in the engineering students. Collaboration 1 paired a 100-level engineering Information Literacy class in Mechanical and Aerospace Engineering with a 300-level Educational Foundation class. Collaboration 2 combined a 300-level Electromechanical Systems class in Mechanical Engineering with a 400-level Educational Technology class. Collaboration 3 paired a 300-level Fluid Mechanics class in Mechanical Engineering Technology with a 400-level Elementary Science Methods class. Collaborations 1 and 3 interacted with fourth or fifth graders by developing and delivering lessons to the elementary students. Students in collaboration 2 worked with fifth graders in an after-school technology club. While each collaboration had its unique elements, all collaborations included the engineering design process both in classroom instruction and during the service learning project. Quantitative data were collected from both engineering and education students in a pretest/posttest design. Teamwork skills were measured in engineering students using a validated teamwork skills assessment based on peer evaluation. Each class had a comparison class taught by the same instructor that included a team project, and the same quantitative measures. Engineering students who participated in collaboration 1 were evaluated for retention, which was defined as students who were still enrolled in the college of engineering and technology two semesters after completion of the course. Engineering students also completed an evaluation of academic and professional persistence. For the engineering students, none of the assessments involving technical skills had significant differences, although the design process knowledge tests trended upward in the treatment classes. The preservice teachers in the treatment group scored significantly higher in the design process knowledge test, and preservice teachers in collaborations 1 and 3 had higher scores in the engineering knowledge test than the comparison group. Teamwork skills in the treatment group were significantly higher than in the comparison group for both engineering and education students. Thus, engineering and education students in the treatment groups saw gains in teamwork skills, while education students saw more gains in engineering knowledge. Finally, all engineering students had significantly higher professional persistence.more » « less
An official website of the United States government
