ABSTRACT A series of Diels–Alder (DA) crosslinked polymethacrylate networks covering a broad range of glass‐transition temperatures (Tg) was prepared to establish the relationship between theTgand the thermal decrosslinking behavior of these networks. A series of permanently crosslinked and uncrosslinked analogues were also prepared to better understand the thermoset‐to‐thermoplastic transition occurring in the DA networks at elevated temperatures. The network series were studied using dynamic mechanical analysis, which established an inverse relationship betweenTgand decrosslinking ability. Differential scanning calorimetry confirmed the viability of the DA linkages in all formulations, and a trapping experiment with 9‐anthracenemethanol demonstrated that even the least responsive network was capable of undergoing decrosslinking given appropriate thermal treatment. While polymer chain mobility has long been understood to be a critical factor in healable materials, this work verifies the importance of this parameter in the decrosslinking of DA networks. © 2019 Wiley Periodicals, Inc. J. Polym. Sci.2020,58, 193–203
more »
« less
This content will become publicly available on April 25, 2026
Viscoelastic Supramolecular Networks Based on Guanidinium‐Oxyanion Interactions
ABSTRACT We describe the synthesis and characterization of supramolecular networks based on charge‐assisted hydrogen bonding interactions of guanidinium and oxyanion functionalities. Although they are constructed entirely of small‐molecule components, these materials display properties such as a glass transition and time‐ and temperature‐dependent viscoelastic rheological behavior. These properties can be tuned by the choice of each network component:Tgvaries by over 50°C in the studied networks, and relaxation times scaled with changes toTg. However, these supramolecular materials are inherently degradable and thermally reversible as no covalent macromolecular structure is formed.
more »
« less
- Award ID(s):
- 2105149
- PAR ID:
- 10585333
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Journal of Polymer Science
- Volume:
- 63
- Issue:
- 11
- ISSN:
- 2642-4150
- Format(s):
- Medium: X Size: p. 2363-2370
- Size(s):
- p. 2363-2370
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The morphological stability of an organic photovoltaic (OPV) device is greatly affected by the dynamics of donors and acceptors occurring near the device's operational temperature. These dynamics can be quantified by the glass transition temperature (Tg) of conjugated polymers (CPs). Because flexible side chains possess much faster dynamics, the cleavage of the alkyl side chains will reduce chain dynamics, leading to a higherTg. In this work, theTgs for CPs are systematically studied with controlled side chain cleavage. Isothermal annealing of polythiophenes featuring thermally cleavable side chains at 140 °C, is found to remove more than 95% of alkyl side chains in 24 h, and raise the backboneTgfrom 23 to 75 °C. Coarse grain molecular dynamics simulations are used to understand theTgdependence on side chain cleavage. X‐ray scattering indicates that the relative degree of crystallization remains constantduring isothermal annealing process. The effective conjugation length is not influenced by thermal cleavage; however, the density of chromophore is doubled after the complete removal of alkyl side chains. The combined effect of enhancingTgand conserving crystalline structures during the thermal cleavage process can provide a pathway to improving the stability of optoelectronic properties in future OPV devices.more » « less
-
Abstract Supramolecular polymer networks contain non-covalent cross-links that enable access to broadly tunable mechanical properties and stimuli-responsive behaviors; the incorporation of multiple unique non-covalent cross-links within such materials further expands their mechanical responses and functionality. To date, however, the design of such materials has been accomplished through discrete combinations of distinct interaction types in series, limiting materials design logic. Here we introduce the concept of leveraging “nested” supramolecular crosslinks, wherein two distinct types of non-covalent interactions exist in parallel, to control bulk material functions. To demonstrate this concept, we use polymer-linked Pd2L4metal–organic cage (polyMOC) gels that form hollow metal–organic cage junctions through metal–ligand coordination and can exhibit well-defined host-guest binding within their cavity. In these “nested” supramolecular network junctions, the thermodynamics of host-guest interactions within the junctions affect the metal–ligand interactions that form those junctions, ultimately translating to substantial guest-dependent changes in bulk material properties that could not be achieved in traditional supramolecular networks with multiple interactions in series.more » « less
-
Abstract Rubber toughening of glassy polystyrene (PS) has been manufactured commercially for decades as high impact polystyrene, where rubbery poly‐butadiene (PB) inclusions are added to modify the PS matrix response to deformation and impact. In this study, measurements of the local glass transition temperatureTg(z) of PS next to PB rubber are presented, expanding the previous data to a polymer with a much lowerTgvalue (PBTgbulk= −96 °C). After accounting for a small molecule additive present in the commercial PB sample that would otherwise migrate over to the PS domain causing plasticization, it is found that theTg(z) profile in PS next to PB is consistent with previous results. It is also demonstrated that these broad and asymmetric experimentally observedTg(z) profiles are not caused by the migration of low molecular weight chains across the interface by comparing samples made with two different poly(n‐butyl methacrylate) molecular weights.more » « less
-
ABSTRACT Thermomechanical properties of polymers highly depend on their glass transition temperature (Tg). Differential scanning calorimetry (DSC) is commonly used to measureTgof polymers. However, many conjugated polymers (CPs), especially donor–acceptor CPs (D–A CPs), do not show a clear glass transition when measured by conventional DSC using simple heat and cool scan. In this work, we discuss the origin of the difficulty for measuringTgin such type of polymers. The changes in specific heat capacity (Δcp) atTgwere accurately probed for a series of CPs by DSC. The results showed a significant decrease in Δcpfrom flexible polymer (0.28 J g−1K−1for polystyrene) to rigid CPs (10−3J g−1K−1for a naphthalene diimide‐based D–A CP). When a conjugation breaker unit (flexible unit) is added to the D–A CPs, we observed restoration of the ΔcpatTgby a factor of 10, confirming that backbone rigidity reduces the Δcp. Additionally, an increase in the crystalline fraction of the CPs further reduces Δcp. We conclude that the difficulties of determiningTgfor CPs using DSC are mainly due to rigid backbone and semicrystalline nature. We also demonstrate that physical aging can be used on DSC to help locate and confirm the glass transition for D‐A CPs with weak transition signals. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys.2019, 57, 1635–1644more » « less
An official website of the United States government
