skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 1, 2026

Title: BehaVR: User Identification Based on VR Sensor Data
Virtual reality (VR) platforms enable a wide range of applications, however, pose unique privacy risks. In particular, VR devices are equipped with a rich set of sensors that collect personal and sensitive information (e.g., body motion, eye gaze, hand joints, and facial expression). The data from these newly available sensors can be used to uniquely identify a user, even in the absence of explicit identifiers. In this paper, we seek to understand the extent to which a user can be identified based solely on VR sensor data, within and across real-world apps from diverse genres. We consider adversaries with capabilities that range from observing APIs available within a single app (app adversary) to observing all or selected sensor measurements across multiple apps on the VR device (device adversary). To that end, we introduce BehaVR, a framework for collecting and analyzing data from all sensor groups collected by multiple apps running on a VR device. We use BehaVR to collect data from real users that interact with 20 popular real-world apps. We use that data to build machine learning models for user identification within and across apps, with features extracted from available sensor data. We show that these models can identify users with an accuracy of up to 100%, and we reveal the most important features and sensor groups, depending on the functionality of the app and the adversary. To the best of our knowledge, BehaVR is the first to analyze user identification in VR comprehensively, i.e., considering all sensor measurements available on consumer VR devices, collected by multiple real-world, as opposed to custom-made, apps.  more » « less
Award ID(s):
1956393 1900654
PAR ID:
10585583
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
The journal Proceedings on Privacy Enhancing Technologies (PoPETs)
Date Published:
Journal Name:
Proceedings on Privacy Enhancing Technologies
Volume:
2025
Issue:
1
ISSN:
2299-0984
Page Range / eLocation ID:
399 to 419
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present the design, implementation and evaluation of a system, called MATRIX, developed to protect the privacy of mobile device users from location inference and sensor side-channel attacks. MATRIX gives users control and visibility over location and sensor (e.g., Accelerometers and Gyroscopes) accesses by mobile apps. It implements a PrivoScope service that audits all location and sensor accesses by apps on the device and generates real-time notifications and graphs for visualizing these accesses; and a Synthetic Location service to enable users to provide obfuscated or synthetic location trajectories or sensor traces to apps they find useful, but do not trust with their private information. The services are designed to be extensible and easy for users, hiding all of the underlying complexity from them. MATRIX also implements a Location Provider component that generates realistic privacy-preserving synthetic identities and trajectories for users by incorporating traffic information using historical data from Google Maps Directions API, and accelerations using statistical information from user driving experiments. These mobility patterns are generated by modeling/solving user schedule using a randomized linear program and modeling/solving for user driving behavior using a quadratic program. We extensively evaluated MATRIX using user studies, popular location-driven apps and machine learning techniques, and demonstrate that it is portable to most Android devices globally, is reliable, has low-overhead, and generates synthetic trajectories that are difficult to differentiate from real mobility trajectories by an adversary. 
    more » « less
  2. Smart homes contain diverse sensors and actuators controlled by IoT apps that provide custom automation. Prior works showed that an adversary could exploit physical interaction vulnerabilities among apps and put the users and environment at risk, e.g., to break into a house, an adversary turns on the heater to trigger an app that opens windows when the temperature exceeds a threshold. Currently, the safe behavior of physical interactions relies on either app code analysis or dynamic analysis of device states with manually derived policies by developers. However, existing works fail to achieve sufficient breadth and fidelity to translate the app code into their physical behavior or provide incomplete security policies, causing poor accuracy and false alarms. In this paper, we introduce a new approach, IoTSeer, which efficiently combines app code analysis and dynamic analysis with new security policies to discover physical interaction vulnerabilities. IoTSeer works by first translating sensor events and actuator commands of each app into a physical execution model (PeM) and unifying PeMs to express composite physical execution of apps (CPeM). CPeM allows us to deploy IoTSeer in different smart homes by defining its execution parameters with minimal data collection. IoTSeer supports new security policies with intended/unintended physical channel labels. It then efficiently checks them on the CPeM via falsification, which addresses the undecidability of verification due to the continuous and discrete behavior of IoT devices. We evaluate IoTSeer in an actual house with 14 actuators, six sensors, and 39 apps. IoTSeer discovers 16 unique policy violations, whereas prior works identify only 2 out of 16 with 18 falsely flagged violations. IoTSeer only requires 30 mins of data collection for each actuator to set the CPeM parameters and is adaptive to newly added, removed, and relocated devices. 
    more » « less
  3. Mobile apps are widely used and often process users’ sensitive data. Many taint analysis tools have been applied to analyze sensitive information flows and report data leaks in apps. These tools require a list of sources (where sensitive data is accessed) as input, and researchers have constructed such lists within the Android platform by identifying Android API methods that allow access to sensitive data. However, app developers may also define methods or use third-party library’s methods for accessing data. It is difficult to collect such source methods because they are unique to the apps, and there are a large number of third-party libraries available on the market that evolve over time. To address this problem, we propose DAISY, a Dynamic-Analysis-Induced Source discoverY approach for identifying methods that return sensitive information from apps and third-party libraries. Trained on an automatically labeled data set of methods and their calling context, DAISY identifies sensitive methods in unseen apps. We evaluated DAISY on real-world apps and the results show that DAISY can achieve an overall precision of 77.9% when reporting the most confident results. Most of the identified sources and leaks cannot be detected by existing technologies. 
    more » « less
  4. With the growth of smartphone sales and app usage, fingerprinting and identification of smartphone apps have become a considerable threat to user security and privacy. Traffic analysis is one of the most common methods for identifying apps. Traditional countermeasures towards traffic analysis includes traffic morphing and multipath routing. The basic idea of multipath routing is to increase the difficulty for adversary to eavesdrop all traffic by splitting traffic into several subflows and transmitting them through different routes. Previous works in multipath routing mainly focus on Wireless Sensor Networks (WSNs) or Mobile Ad Hoc Networks (MANETs). In this paper, we propose a multipath routing scheme for smartphones with edge network assistance to mitigate traffic analysis attack. We consider an adversary with limited capability, that is, he can only intercept the traffic of one node following certain attack probability, and try to minimize the traffic an adversary can intercept. We formulate our design as a flow routing optimization problem. Then a heuristic algorithm is proposed to solve the problem. Finally, we present the simulation results for our scheme and justify that our scheme can effectively protect smartphones from traffic analysis attack. 
    more » « less
  5. Android’s flexible communication model allows interactions among third-party apps, but it also leads to inter-app security vulnerabilities. Specifically, malicious apps can eavesdrop on interactions between other apps or exploit the functionality of those apps, which can expose a user’s sensitive information to attackers. While the state-of-the-art tools have focused on detecting inter-app vulnerabilities in Android, they neither accurately analyze realistically large numbers of apps nor effectively deliver the identified issues to users. This paper presents SEALANT, a novel tool that combines static analysis and visualization techniques that, together, enable accurate identification of inter-app vulnerabilities as well as their systematic visualization. SEALANT statically analyzes architectural information of a given set of apps, infers vulnerable communication channels where inter-app attacks can be launched, and visualizes the identified information in a compositional representation. SEALANT has been demonstrated to accurately identify inter-app vulnerabilities from hundreds of real-world Android apps and to effectively deliver the identified information to users. 
    more » « less