null
(Ed.)
Abstract The purpose of the present paper is to prove existence of super-exponentially many compact orientable hyperbolic arithmetic $$n$$-manifolds that are geometric boundaries of compact orientable hyperbolic $(n+1)$-manifolds, for any $$n \geq 2$$, thereby establishing that these classes of manifolds have the same growth rate with respect to volume as all compact orientable hyperbolic arithmetic $$n$$-manifolds. An analogous result holds for non-compact orientable hyperbolic arithmetic $$n$$-manifolds of finite volume that are geometric boundaries for $$n \geq 2$$.
more »
« less
An official website of the United States government
