skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: Unraveling magneto-elastoresistance in the Dirac nodal-line semi-metal ZrSiSe
Abstract Quantum materials are often characterized by a marked sensitivity to minute changes in their physical environment, a property that can lead to new functionalities and thereby, to novel applications. One such key property is the magneto-elastoresistance (MER), the change in magnetoresistance (MR) of a metal induced by uniaxial strain. Understanding and modeling this response can prove challenging, particularly in systems with complex Fermi surfaces. Here, we present a thorough analysis of the MER in the nearly compensated Dirac nodal-line semi-metal ZrSiSe. Small amounts of strain (0.27%) lead to large changes (7%) in the MR. Subsequent analysis reveals that the MER response is driven primarily by a change in transport mobility that varies linearly with the applied strain. This study showcases how the effect of strain tuning on the electrical properties can be both qualitatively and quantitatively understood. A complementary Shubnikov-de Haas oscillation study sheds light on the root of this change in quantum mobility. Moreover, we unambiguously show that the Fermi surface consists of distinct electron and hole pockets revealed in quantum oscillation measurements originating from magnetic breakdown.  more » « less
Award ID(s):
2011750
PAR ID:
10585779
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
NPJ Quantum Materials
Date Published:
Journal Name:
npj Quantum Materials
Volume:
9
Issue:
1
ISSN:
2397-4648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A long-standing problem in the study of the under-hole-doped cuprates has been the description of the Fermi surfaces underlying the high magnetic field quantum oscillations, and their connection to the higher temperature pseudogap metal. Harrison and Sebastian [Phys. Rev. Lett.106, 226402 (2011)] proposed that the pseudogap “Fermi arcs” are reconstructed into an electron pocket by field-induced charge density wave order. But computations on such a model [Zhang and Mei,Europhys. Lett.114, 47008 (2016)] show an unobserved additional oscillation frequency from a Fermi surface arising from the backsides of the hole pockets completing the Fermi arcs. We describe a transition from a fractionalized Fermi liquid (FL*) model of the pseudogap metal, to a metal with bidirectional charge density wave order without fractionalization. We show that the confinement of the fermionic spinon excitations of the FL* across this transition can eliminate the unobserved oscillation frequency. 
    more » « less
  2. PurposeDuring MR scans, abandoned leads from active implantable medical devices (AIMDs) can experience excessive heating at the lead tip, depending on the type of termination applied to the proximal contacts (proximal end treatment). The influence of different proximal end treatments (ie, [1] freely exposed in the tissue, [2] terminated with metal in contact with the tissue, or [3] capped with plastic, and thereby fully insulated, on the RF‐induced lead‐tip heating) are studied. A technique to ensure that MR Conditional AIMD leads remain MR Conditional even when abandoned is recommended. MethodsAbandoned leads from three MR Conditional AIMDs ([1] a sacral neuromodulation system, [2] a cardiac rhythm management pacemaker system, and [3] a deep brain stimulator system) were investigated in this study. The computational lead models (ie, the transfer functions) for different proximal end treatments were measured and used to assess the in vivo lead‐tip heating for four virtual human models (FATS, Duke, Ella, and Billie) and compared with the lead‐tip heating of the complete MR Conditional AIMD system. ResultThe average and maximum lead‐tip heating for abandoned leads proximally capped with metal is always lower than that from the complete AIMD system. Abandoned leads proximally insulated could lead to an average in vivo temperature rise up to 3.5 times higher than that from the complete AIMD system. ConclusionFor the three investigated AIMDs under 1.5T MR scanning, our results indicate that RF‐induced lead‐tip heating of abandoned leads strongly depends on the proximal lead termination. A metallic cap applied to the proximal termination of the tested leads could significantly reduce the RF‐induced lead‐tip heating. 
    more » « less
  3. Benenson, Itzhak (Ed.)
    With the onset of COVID-19 and the resulting shelter in place guidelines combined with remote working practices, human mobility in 2020 has been dramatically impacted. Existing studies typically examine whether mobility in specific localities increases or decreases at specific points in time and relate these changes to certain pandemic and policy events. However, a more comprehensive analysis of mobility change over time is needed. In this paper, we study mobility change in the US through a five-step process using mobility footprint data. (Step 1) Propose the Delta Time Spent in Public Places (ΔTSPP) as a measure to quantify daily changes in mobility for each US county from 2019-2020. (Step 2) Conduct Principal Component Analysis (PCA) to reduce the ΔTSPP time series of each county to lower-dimensional latent components of change in mobility. (Step 3) Conduct clustering analysis to find counties that exhibit similar latent components. (Step 4) Investigate local and global spatial autocorrelation for each component. (Step 5) Conduct correlation analysis to investigate how various population characteristics and behavior correlate with mobility patterns. Results show that by describing each county as a linear combination of the three latent components, we can explain 59% of the variation in mobility trends across all US counties. Specifically, change in mobility in 2020 for US counties can be explained as a combination of three latent components: 1) long-term reduction in mobility, 2) no change in mobility, and 3) short-term reduction in mobility. Furthermore, we find that US counties that are geographically close are more likely to exhibit a similar change in mobility. Finally, we observe significant correlations between the three latent components of mobility change and various population characteristics, including political leaning, population, COVID-19 cases and deaths, and unemployment. We find that our analysis provides a comprehensive understanding of mobility change in response to the COVID-19 pandemic. 
    more » « less
  4. The precise controllability of the Fermi level is a critical aspect of quantum materials. For topological Weyl semimetals, there is a pressing need to fine-tune the Fermi level to the Weyl nodes and unlock exotic electronic and optoelectronic effects associated with the divergent Berry curvature. However, in contrast to two-dimensional materials, where the Fermi level can be controlled through various techniques, the situation for bulk crystals beyond laborious chemical doping poses significant challenges. Here, we report the milli-electron-volt (meV) level ultra-fine-tuning of the Fermi level of bulk topological Weyl semimetal tantalum phosphide using accelerator-based high-energy hydrogen implantation and theory-driven planning. By calculating the desired carrier density and controlling the accelerator profiles, the Fermi level can be experimentally fine-tuned from 5 meV below, to 3.8 meV below, to 3.2 meV above the Weyl nodes. High-resolution transmission electron microscopy reveals the crystalline structure is largely maintained under irradiation, while electrical transport indicates that Weyl nodes are preserved and carrier mobility is also largely retained. Our work demonstrates the viability of this generic approach to tune the Fermi level in semimetal systems and could serve to achieve property fine-tuning for other bulk quantum materials with ultrahigh precision. 
    more » « less
  5. Sepsis is a lethal syndrome manifested by an unregulated, overwhelming inflammation from the host in response to infection. Here, we exploit the use of a synthetic heparan sulfate octadecasaccharide (18-mer) to protect against sepsis. The 18-mer not only inhibits the pro-inflammatory activity of extracellular histone H3 and high mobility group box 1 (HMGB1), but also elicits the anti-inflammatory effect from apolipoprotein A-I (ApoA-I). We demonstrate that the 18-mer protects against sepsis-related injury and improves survival in cecal ligation and puncture mice and reduces inflammation in an endotoxemia mouse model. The 18-mer neutralizes the cytotoxic histone-3 (H3) through direct interaction with the protein. Furthermore, the 18-mer enlists the actions of ApoA-I to dissociate the complex of HMGB1 and lipopolysaccharide, a toxic complex contributing to cell death and tissue damage in sepsis. Our study provides strong evidence that the 18-mer mitigates inflammatory damage in sepsis by targeting numerous mediators, setting it apart from other potential therapies with a single target. 
    more » « less