skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Thermophysical States of MgSiO 3 Liquid up to Terapascal Pressures: Implications for Magma Oceans in Super‐Earths and Sub‐Neptunes
Abstract Thermophysical properties of silicate liquids under extreme conditions are critical for understanding the accretion and evolution of super‐Earths and sub‐Neptunes. The thermal equation of state and viscosity of silicate liquids determine the adiabatic profiles and dynamics of magma oceans. However, these properties are challenging to constrain at elevated pressures in experiments. Here, we perform ab initio molecular dynamics simulations of MgSiO3liquid across a wide range of pressures (0–1,200 GPa) and temperatures (2200–14000 K) and analyze its structure, the Grüneisen parameter, and viscosity. Our results reveal the clear temperature and pressure dependence of the Grüneisen parameter, which varies synchronously with the O‐O coordination number. The Grüneisen parameter shifts from positive to negative temperature dependence between ∼20 and 70 GPa, corresponding to a peak in the O‐O coordination number and SiO5abundance. Initially, the Grüneisen parameter increases with pressure and then decreases, showing limited temperature dependence above ∼300 GPa, where its behavior resembles that of solids. Furthermore, we determine the adiabat and viscosity profiles of magma oceans in super‐Earths and sub‐Neptunes. The results suggest that the mantles of super‐Earths and sub‐Neptunes may solidify either from the bottom up or at pressures of ∼120–150 GPa, depending on the curvature of the mantle melting line. The low viscosity of magma oceans likely enhances convective currents and facilitate efficient differentiation. These thermophysical properties, now quantified up to terapascal pressures, enable updates to the mass‐radius relation of magma ocean exoplanets, showing notable differences compared to their solid counterparts.  more » « less
Award ID(s):
2242946
PAR ID:
10585937
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Planets
Volume:
130
Issue:
4
ISSN:
2169-9097
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We investigate the consequences of nonideal chemical interaction between silicate and overlying hydrogen-rich envelopes for rocky planets using basic tenets of phase equilibria. Based on our current understanding of the temperature and pressure conditions for complete miscibility of silicate and hydrogen, we find that the silicate-hydrogen binary solvus will dictate the nature of atmospheres and internal layering in rocky planets that garnered H2-rich primary atmospheres. The temperatures at the surfaces of supercritical magma oceans will correspond to the silicate-hydrogen solvus. As a result, the radial positions of supercritical magma ocean–atmosphere interfaces, rather than their temperatures and pressures, should reflect the thermal states of these planets. The conditions prescribed by the solvus influence the structure of the atmosphere, and thus the transit radii of sub-Neptunes. Separation of iron-rich metal to form metal cores in sub-Neptunes and super-Earths is not assured due to prospects for neutral buoyancy of metal in silicate melt induced by dissolution of H, Si, and O in the metal at high temperatures. 
    more » « less
  2. Abstract Sub-Neptune exoplanets may have thick hydrogen envelopes and therefore develop a high-pressure interface between hydrogen and the underlying silicates/metals. Some sub-Neptunes may convert to super-Earths via massive gas loss. If hydrogen chemically reacts with oxides and metals at high pressures and temperatures (P−T), it could impact the structure and composition of the cores and atmospheres of sub-Neptunes and super-Earths. While H2gas is a strong reducing agent at low pressures, the behavior of hydrogen is unknown at theP−Texpected for sub-Neptunes’ interiors, where hydrogen is a dense supercritical fluid. Here we report experimental results of reactions between ferrous/ferric oxides and hydrogen at 20–40 GPa and 1000–4000 K utilizing the pulsed laser-heated diamond-anvil cell combined with synchrotron X-ray diffraction. Under these conditions, hydrogen spontaneously strips iron off the oxides, forming Fe-H alloys and releasing oxygen to the hydrogen medium. In a planetary context where this reaction may occur, the Fe-H alloy may sink to the metallic part of the core, while released oxygen may stabilize as water in the silicate layer, providing a mechanism to ingas hydrogen to the deep interiors of sub-Neptunes. Water produced from the redox reaction can also partition to the atmosphere of sub-Neptunes, which has important implications for understanding the composition of their atmospheres. In addition, super-Earths converted from sub-Neptunes may contain a large amount of hydrogen and water in their interiors (at least a few wt% H2O). This is distinct from smaller rocky planets, which were formed relatively dry (likely a few hundredths wt% H2O). 
    more » « less
  3. Abstract The recent JWST detections of carbon-bearing molecules in a habitable-zone sub-Neptune have opened a new era in the study of low-mass exoplanets. The sub-Neptune regime spans a wide diversity of planetary interiors and atmospheres not witnessed in the solar system, including mini-Neptunes, super-Earths, and water worlds. Recent works have investigated the possibility of gas dwarfs, with rocky interiors and thick H2-rich atmospheres, to explain aspects of the sub-Neptune population, including the radius valley. Interactions between the H2-rich envelope and a potential magma ocean may lead to observable atmospheric signatures. We report a coupled interior-atmosphere modeling framework for gas dwarfs to investigate the plausibility of magma oceans on such planets and their observable diagnostics. We find that the surface–atmosphere interactions and atmospheric composition are sensitive to a wide range of parameters, including the atmospheric and internal structure, mineral composition, volatile solubility and atmospheric chemistry. While magma oceans are typically associated with high-temperature rocky planets, we assess if such conditions may be admissible and observable for temperate sub-Neptunes. We find that a holistic modeling approach is required for this purpose and to avoid unphysical model solutions. Using our model framework, we consider the habitable-zone sub-Neptune K2-18 b as a case study and find that its observed atmospheric composition is incompatible with a magma ocean scenario. We identify key atmospheric molecular and elemental diagnostics, including the abundances of CO2, CO, NH3, and, potentially, S-bearing species. Our study also underscores the need for fundamental material properties for accurate modeling of such planets. 
    more » « less
  4. Abstract The essential data for interior and thermal evolution models of the Earth and super-Earths are the density and melting of mantle silicate under extreme conditions. Here, we report an unprecedently high melting temperature of MgSiO3at 500 GPa by direct shockwave loading of pre-synthesized dense MgSiO3(bridgmanite) using the Z Pulsed Power Facility. We also present the first high-precision density data of crystalline MgSiO3to 422 GPa and 7200 K and of silicate melt to 1254 GPa. The experimental density measurements support our density functional theory based molecular dynamics calculations, providing benchmarks for theoretical calculations under extreme conditions. The excellent agreement between experiment and theory provides a reliable reference density profile for super-Earth mantles. Furthermore, the observed upper bound of melting temperature, 9430 K at 500 GPa, provides a critical constraint on the accretion energy required to melt the mantle and the prospect of driving a dynamo in massive rocky planets. 
    more » « less
  5. Abstract Silicate melts have served as transport agents in the chemical and thermal evolution of Earth. Molecular dynamics simulations based on a deep neural network potential trained byab initiodata show that the viscosity of MgSiO3melt decreases with increasing pressure at low pressures (up to ∼6 GPa) before it starts to increase with further compression. The melt electrical conductivity also behaves anomalously; first increasing and then decreasing with pressure. The melt accumulation implied by the viscosity turnover at ∼23 GPa along mantle liquidus offers an explanation for the low‐velocity zone at the 660‐km discontinuity. The increase in electrical conductivity up to ∼50 GPa may contribute to the steep rise of Earth's electrical conductivity profiles derived from magnetotelluric observations. Our results also suggest that small fraction of melts could give rise to detectable bulk conductivity in deeper parts of the mantle. 
    more » « less