When communication between teammates is limited to observations of each other’s actions, agents may need to improvise to stay coordinated. Unfortunately, current methods inadequately capture the uncertainty introduced by a lack of direct communication. This paper augments existing frameworks to introduce Simple Temporal Networks for Improvisational Teamwork (STN-IT) — a formulation that captures both the temporal dependencies and uncertainties between agents who need to coordinate, but lack reliable communication. We define the notion of strong controllability for STN-ITs, which establishes a static scheduling strategy for controllable agents that produces a consistent team schedule, as long as non-communicative teammates act within known problem constraints. We provide both an exact and approximate approach for finding strongly controllable schedules, empirically demonstrate the trade-offs between these two approaches on a benchmark of STN-ITs, and show analytically that the exact method is correct. In addition, we provide an empirical analysis of the exact and approximate approaches’ efficiency
This content will become publicly available on September 19, 2023
Learning to Design Fair and Private Voting Rules
Voting is used widely to identify a collective decision for a group of agents, based on their preferences. In this paper, we focus on evaluating and designing voting rules that support both the privacy of the voting agents and a notion of fairness over such agents. To do this, we introduce a novel notion of group fairness and adopt the existing notion of local differential privacy. We then evaluate the level of group fairness in several existing voting rules, as well as the trade-offs between fairness and privacy, showing that it is not possible to always obtain maximal economic efficiency with high fairness or high privacy levels. Then, we present both a machine learning and a constrained optimization approach to design new voting rules that are fair while maintaining a high level of economic efficiency. Finally, we empirically examine the effect of adding noise to create local differentially private voting rules and discuss the three-way trade-off between economic efficiency, fairness, and privacy.This paper appears in the special track on AI & Society.
- Publication Date:
- NSF-PAR ID:
- 10388995
- Journal Name:
- Journal of Artificial Intelligence Research
- Volume:
- 75
- Page Range or eLocation-ID:
- 1139 to 1176
- ISSN:
- 1076-9757
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We study the problem of approximating maximum Nash social welfare (NSW) when allocating m indivisible items among n asymmetric agents with submodular valuations. The NSW is a well-established notion of fairness and efficiency, defined as the weighted geometric mean of agents' valuations. For special cases of the problem with symmetric agents and additive(-like) valuation functions, approximation algorithms have been designed using approaches customized for these specific settings, and they fail to extend to more general settings. Hence, no approximation algorithm with factor independent of m is known either for asymmetric agents with additive valuations or for symmetric agents beyond additive(-like) valuations. In this paper, we extend our understanding of the NSW problem to far more general settings. Our main contribution is two approximation algorithms for asymmetric agents with additive and submodular valuations respectively. Both algorithms are simple to understand and involve non-trivial modifications of a greedy repeated matchings approach. Allocations of high valued items are done separately by un-matching certain items and re-matching them, by processes that are different in both algorithms. We show that these approaches achieve approximation factors of O(n) and O(n log n) for additive and submodular case respectively, which is independent of the number of items.more »
-
Traditionally, an item-level differential privacy framework has been studied for applications in distributed learning. However, when a client has multiple data samples, and might want to also hide its potential participation, a more appropriate notion is that of user-level privacy [1]. In this paper, we develop a distributed private optimization framework that studies the trade-off between user-level local differential privacy guarantees and performance. This is enabled by a novel distributed user- level private mean estimation algorithm using distributed private heavy-hitter estimation. We use this result to develop the privacy- performance trade-off for distributed optimization.
-
Abstract
Between 2018 and 2021 PIs for National Science Foundation Awards # 1758781 and 1758814 EAGER: Collaborative Research: Developing and Testing an Incubator for Digital Entrepreneurship in Remote Communities, in partnership with the Tanana Chiefs Conference, the traditional tribal consortium of the 42 villages of Interior Alaska, jointly developed and conducted large-scale digital and in-person surveys of multiple Alaskan interior communities. The survey was distributed via a combination of in-person paper surveys, digital surveys, social media links, verbal in-person interviews and telephone-based responses. Analysis of this measure using SAS demonstrated the statistically significant need for enhanced digital infrastructure and reworked digital entrepreneurial and technological education in the Tanana Chiefs Conference region. 1. Two statistical measures were created during this research: Entrepreneurial Readiness (ER) and Digital Technology needs and skills (DT), both of which showed high measures of internal consistency (.89, .81). 2. The measures revealed entrepreneurial readiness challenges and evidence of specific addressable barriers that are currently preventing (serving as hindrances) to regional digital economic activity. The survey data showed statistically significant correlation with the mixed-methodological in-person focus groups and interview research conducted by the PIs and TCC collaborators in Hughes and Huslia, AK, which further corroborated stated barriers to -
Recent years have witnessed the pivotal role of Graph Neural Networks (GNNs) in various high-stake decision-making scenarios due to their superior learning capability. Close on the heels of the successful adoption of GNNs in different application domains has been the increasing societal concern that conventional GNNs often do not have fairness considerations. Although some research progress has been made to improve the fairness of GNNs, these works mainly focus on the notion of group fairness regarding different subgroups defined by a protected attribute such as gender, age, and race. Beyond that, it is also essential to study the GNN fairness at a much finer granularity (i.e., at the node level) to ensure that GNNs render similar prediction results for similar individuals to achieve the notion of individual fairness. Toward this goal, in this paper, we make an initial investigation to enhance the individual fairness of GNNs and propose a novel ranking based framework---REDRESS. Specifically, we refine the notion of individual fairness from a ranking perspective, and formulate the ranking based individual fairness promotion problem. This naturally addresses the issue of Lipschitz constant specification and distance calibration resulted from the Lipschitz condition in the conventional individual fairness definition. Our proposed frameworkmore »